Evaluation of Long-Term Field Performance of Cold In-Place Recycled Roads:

Field and Laboratory Testing

Final Report May 2007

Sponsored by

the Iowa Highway Research Board (IHRB Project TR-502) and the Iowa Department of Transportation (CTRE Project 03-160)

lowa State University's Center for Transportation Research and Education is the umbrella organization for the following centers and programs: Bridge Engineering Center • Center for Weather Impacts on Mobility and Safety • Construction Management & Technology • Iowa Local Technical Assistance Program • Iowa Traffic Safety Data Service • Midwest Transportation Consortium • National Concrete Pavement Technology Center • Partnership for Geotechnical Advancement • Roadway Infrastructure Management and Operations Systems • Statewide Urban Design and Specifications • Traffic Safety and Operations

About CTRE/ISU

The mission of the Center for Transportation Research and Education (CTRE) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, and reliability while improving the learning environment of students, faculty, and staff in transportation-related fields.

Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Non-discrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, (515) 294-7612.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalo	g No.	
IHRB Project TR-502				
4. Title and Subtitle		5. Report Date		
Evaluation of Long-Term Field Perform	nance of Cold In-Place Recycled Roads:	May 2007		
Field and Laboratory Testing	6. Performing Organization Code			
7. Author(s)	8. Performing Organization Report No.			
Don Chen, Charles Jahren		CTRE Project 03-160		
9. Performing Organization Name an	d Address	10. Work Unit No. (T	(RAIS)	
Center for Transportation Research and	Education			
Iowa State University		11. Contract or Gran	nt No.	
2711 South Loop Drive, Suite 4700				
Ames, IA 50010-8664				
12. Sponsoring Organization Name and	nd Address	13. Type of Report a	nd Period Covered	
Iowa Highway Research Board		Final Report		
lowa Department of Transportation		14. Sponsoring Agen	cy Code	
800 Lincoln Way				
Ames, IA 50010				
15. Supplementary Notes				
16. Abstract Cold in-place recycling (CIR) has becomes uffering distress related to non-structure	F files of this and other research reports. me an attractive method for rehabilitating a ral aging and cracking of the pavement laye	r. Although CIR is widely	y used, its use could be	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has become suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sup the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, agec roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of commodulus of the CIR layer and the air vor performance for high-traffic roads. For The results of this research can help ide	me an attractive method for rehabilitating a	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result ning the age of the recycle s, and road performance. a sample of roads studied 999. hese CIR asphalt roads. T t important factors affecting rength significantly affector	y used, its use could be ecycled under similar developed, design s no clear understanding of lting performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research The results indicate that the ng CIR pavement ed pavement performance	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has becoms suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sup the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, aged roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of com modulus of the CIR layer and the air vo performance for high-traffic roads. For The results of this research can help ide order to improve the performance and c	me an attractive method for rehabilitating a ral aging and cracking of the pavement laye predictable. Transportation officials have o for no clear reason. Moreover, a rational mi oport of the CIR layer remain empirical and he choices made during the design/construc- igate these relationships, especially concern lengineering properties of the CIR material 2004 were studied: 18 were selected from from newer CIR projects constructed after 1 prehensive field and laboratory testing for t ids of the CIR asphalt binder were the mos low-traffic roads, the wet indirect tensile sti- ntify changes that should be made with reg	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result ning the age of the recycle s, and road performance. a sample of roads studied 999. hese CIR asphalt roads. T important factors affecting ength significantly affected and to design, material sel	y used, its use could be ecycled under similar developed, design s no clear understanding of ting performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research The results indicate that the ng CIR pavement ed pavement performance ection, and construction in	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has becoms suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sup the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, aged roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of commodulus of the CIR layer and the air vor performance for high-traffic roads. For The results of this research can help ide order to improve the performance and c	me an attractive method for rehabilitating a ral aging and cracking of the pavement laye predictable. Transportation officials have o for no clear reason. Moreover, a rational mi poport of the CIR layer remain empirical and he choices made during the design/construc- igate these relationships, especially concern l engineering properties of the CIR material 2004 were studied: 18 were selected from from newer CIR projects constructed after 1 prehensive field and laboratory testing for t ids of the CIR asphalt binder were the moss low-traffic roads, the wet indirect tensile stu- ntify changes that should be made with reg ost-effectiveness of future recycled roads.	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result and road performance. a sample of roads studied 999. hese CIR asphalt roads. T important factors affecting ength significantly affected and to design, material sel 18. Distribution State	y used, its use could be ecycled under similar developed, design s no clear understanding of ting performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research he results indicate that the ng CIR pavement ed pavement performance ection, and construction i	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has becoms suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sup the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, aged roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of commodulus of the CIR layer and the air vor performance for high-traffic roads. For The results of this research can help ide order to improve the performance and c 17. Key Words asphalt pavement performance—asphal	me an attractive method for rehabilitating a ral aging and cracking of the pavement laye predictable. Transportation officials have o for no clear reason. Moreover, a rational mi oport of the CIR layer remain empirical and he choices made during the design/construc- igate these relationships, especially concern lengineering properties of the CIR material 2004 were studied: 18 were selected from from newer CIR projects constructed after 1 prehensive field and laboratory testing for t ids of the CIR asphalt binder were the mos low-traffic roads, the wet indirect tensile sti- ntify changes that should be made with reg	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result ning the age of the recycle s, and road performance. a sample of roads studied 999. hese CIR asphalt roads. T important factors affecting ength significantly affected and to design, material sel	y used, its use could be ecycled under similar developed, design s no clear understanding of ting performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research he results indicate that the ng CIR pavement ed pavement performance ection, and construction i	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has becoms suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sug- the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, aged roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of com- modulus of the CIR layer and the air vor- performance for high-traffic roads. For The results of this research can help ide order to improve the performance and c 17. Key Words asphalt pavement performance—asphalir recycling—recycled asphalt pavements 19. Security Classification (of this	me an attractive method for rehabilitating a ral aging and cracking of the pavement laye predictable. Transportation officials have o for no clear reason. Moreover, a rational mi oport of the CIR layer remain empirical and he choices made during the design/construc- igate these relationships, especially concern lengineering properties of the CIR material 2004 were studied: 18 were selected from from newer CIR projects constructed after 1 prehensive field and laboratory testing for t ids of the CIR asphalt binder were the mos low-traffic roads, the wet indirect tensile stin ntify changes that should be made with reg ost-effectiveness of future recycled roads.	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result and road performance. a sample of roads studied 999. hese CIR asphalt roads. T important factors affecting ength significantly affected and to design, material sel 18. Distribution State	y used, its use could be ecycled under similar developed, design s no clear understanding of ting performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research he results indicate that the ng CIR pavement ed pavement performance ection, and construction i	
Visit www.ctre.iastate.edu for color PD 16. Abstract Cold in-place recycling (CIR) has becoms suffering distress related to non-structure expanded if its performance were more circumstances perform very differently assumptions regarding the structural sug- the cause-effect relationships between t The objective of this project is to invest traffic volume, support conditions, aged roads constructed in Iowa from 1986 to project (HR-392), and 6 were selected f This report describes the results of com- modulus of the CIR layer and the air vor- performance for high-traffic roads. For The results of this research can help ide order to improve the performance and c 17. Key Words asphalt pavement performance—asphal recycling—recycled asphalt pavements	me an attractive method for rehabilitating a ral aging and cracking of the pavement laye predictable. Transportation officials have o for no clear reason. Moreover, a rational mi poport of the CIR layer remain empirical and he choices made during the design/construc- igate these relationships, especially concern lengineering properties of the CIR material 2004 were studied: 18 were selected from from newer CIR projects constructed after 1 prehensive field and laboratory testing for t ids of the CIR asphalt binder were the mos low-traffic roads, the wet indirect tensile stin ntify changes that should be made with reg ost-effectiveness of future recycled roads.	r. Although CIR is widely bserved roads that were re x design has not yet been conservative, and there is tion process and the result ning the age of the recycle s, and road performance. a sample of roads studied 999. hese CIR asphalt roads. T t important factors affecting rength significantly affected ard to design, material sel 18. Distribution State No restrictions.	y used, its use could be ecycled under similar developed, design s no clear understanding of thing performance. ed pavement, cumulative Twenty-four CIR asphalt in a previous research The results indicate that the ng CIR pavement ed pavement performance ection, and construction in ement	

EVALUATION OF LONG-TERM FIELD PERFORMANCE OF COLD IN-PLACE RECYCLED ROADS: FIELD AND LABORATORY TESTING

Final Report May 2007

Principal Investigator

Charles Jahren Associate Professor Civil, Construction, and Environmental Engineering, Iowa State University

Research Assistant Don Chen

Authors Don Chen, Charles Jahren

Sponsored by the Iowa Highway Research Board (IHRB Project TR-502)

Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its research management agreement with the Center for Transportation Research and Education, CTRE Project 03-160.

A report from Center for Transportation Research and Education Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103 Fax: 515-294-0467 www.ctre.iastate.edu

ACKNOWLEDGMENTS	IX
1. GENERAL INTRODUCTION	1
 1.1. Introduction 1.2. Problem Statement 1.3. Purpose of the Study 1.4. Scope of the Study 1.5. Organization of the Report 	1 2 2
2. LITERATURE REVIEW	3
 2.1. Background 2.2. Cold In-Place Recycling 2.3. Extent of Use 2.4. Construction Methods 2.5. Performance 2.6. Support Condition 2.7. Engineering Properties of CIR Mixtures 2.8. Economics 2.9. Summaries 2.10. Glossary 	4 5 6 8 8 9 10
3. METHODOLOGY	12
3.1. Overview3.2. Data Collection and Processing3.3. Laboratory Test Methodology	13
4. EVALUATION OF LONG-TERM PERFORMANCE OF COLD IN-PLACE RECYCLE ROADS	
4.1. Data4.2. Statistical Analysis and Results	
5. CONCLUSIONS AND RECOMMENDATIONS	62
5.1. Conclusions5.2. Recommendations	
REFERENCES	64
APPENDIX A. QUESTIONNAIRE TO COUNTY ENGINEERS	A-1
APPENDIX B. LOCATIONS OF SAMPLED ROADS	B-1
APPENDIX C. LABORATORY TESTING DATA	C-1
APPENDIX D. AGGREGATE GRADATIONS	D-1

TABLE OF CONTENTS

APPENDIX E. FALLING WEIGHT DEFLECTOMETER RAW DATA	E-1
APPENDIX F. FWD DEFLECTION AND MODULI	F-1
APPENDIX G. SAS PROGRAM CODE AND SELECTED OUTPUT	G- 1

LIST OF FIGURES

Figure 3.1. Flow chart of the study	12
Figure 3.2. Length and width measurement of distresses using MIAS	17
Figure 3.3. Area measurement of distresses using MIAS	17
Figure 3.4. Pavement structure	20
Figure 3.5. DCP scheme	21
Figure 3.6. DCP operation	22
Figure 3.7. Benkelman Beam scheme	23
Figure 3.8. Dynaflect scheme	23
Figure 3.9. Road Rater	24
Figure 3.10. FWD scheme	25
Figure 3.11. FWD equipment	25
Figure 3.12. Typical location of loading plate and deflection sensors*	26
Figure 3.13. Sensor layout for the FWD used in this study	29
Figure 3.14. Locations of cores	
Figure 3.15. FWD raw data	30
Figure 3.16. FWD raw data converter	31
Figure 3.17. BAKFAA interface	32
Figure 3.18. Locations of FWD tests	
Figure 3.19. Flowchart describing laboratory testing	35
Figure 4.1. Observed PCI versus age for all 24 CIR roads	42
Figure 4.2. Complex shear modulus component	45
Figure 4.3. Scatter plot of all 24 CIR roads	52
Figure 4.4. Scatter plot of low-traffic roads (AADT<800)	52
Figure 4.5. Scatter plot of high-traffic roads (AADT>800)	53
Figure 4.6. Residuals versus independent variables	55
Figure 4.7. Importance of variables (rolled-down cracking)	61
Figure 4.8. Importance of variables (rutting)	61

LIST OF TABLES

Table 3.1. Summary of the questionnaire results	15
Table 3.2. Distress survey of old test sections (per 100 feet)	
Table 3.3. Distress survey of old test sections, continued (per 100 feet)	18
Table 3.4. Distress survey of new test sections (per 100 feet)	19
Table 3.5. Main errors and remedy actions with the FWD test	26
Table 3.6. Forces applied to the pavement by various testing methods	27
Table 3.7. Deflection measurement methods used by various testing methods	27
Table 3.8. Summary of efficiency of deflection measurement methods	27
Table 3.9. Dates of FWD tests (sorted by the testing date)	28
Table 3.10. Dates of FWD tests (sorted by road names)	28
Table 3.11. Initial inputs for BAKFAA	
Table 3.12. Research project steering committee	33
Table 3.13. Questions considered in each testing phase	34
Table 3.14. The measurements calibrated for each equipment	34
Table 3.15. The number of mixture performance test specimens for each group	37
Table 3.16. Test protocol for DSR and BBR	38
Table 3.17. Number of cores and replications	39
Table 4.1. Traffic level of sample roads	41
Table 4.2. Summary of PCI values	
Table 4.3. Summary of the resilient moduli	44
Table 4.4. Summary of data (sorted by traffic)	
Table 4.5. Summary statistics for all roads (range and mean/standard deviation)	48
Table 4.6. Correlation matrix for all 24 CIR roads	50
Table 4.7. Correlation matrix for low-traffic roads	
Table 4.8. Correlation matrix for high-traffic roads	51
Table 4.9. VIF values of independent variables	51
Table 4.10. Regression results for low-traffic roads	
Table 4.11. Regression results for high-traffic roads	57
Table 4.12. Regression results for all 24 CIR roads	
Table 4.13. Regression results from the higher order model	57
Table 4.14. Rolled-down cracking and rutting status of 17 CIR roads	60
Table 4.15. Regression results for rolled-down cracking	60
Table 4.16. Regression results for rutting	
Table C.1. Lab testing data, G _{mb}	C-1
Table C.2. Lab testing data, G _{mm}	C-7
Table C.3. Lab testing data, IDT _{wet} and IDT _{dry}	C-9
Table C.4. Lab testing data, penetration	C-17
Table C.5. Lab testing data, S(t) and m-value	C-18

ACKNOWLEDGMENTS

The authors would like to thank the Iowa Highway Research Board for sponsoring this research. The authors wish to thank the following individuals for their assistance:

- Mike Heitzman, P.E., Bituminous Materials Engineer, Iowa Department of Transportation (DOT),
- Larry Mattusch, P.E., County Engineer, Scott County,
- Mike Kvach, Executive Vice President, Asphalt Paving Association of Iowa (APAI),
- Bob Nady, P.E., Construction Materials Testing
- Tom Stoner, P.E., County Engineer, Harrison County.
- Chris Williams, P.E., Associate Professor, Iowa State University

1. GENERAL INTRODUCTION

1.1. Introduction

Asphalt pavements deteriorate over time due to traffic and environmental effects. In order to keep an asphalt pavement at a certain acceptable level of serviceability, highway agencies need to select an appropriate rehabilitation method among three common alternatives: thick or thin hot mix asphalt (HMA) overlay, asphalt pavement recycling, and reconstruction (ARRA 1992a). Without rehabilitation, pavements can deteriorate at a faster rate and ultimately cost much more to maintain than pavements maintained with proper rehabilitation.

Studies have shown that transverse and longitudinal cracks in asphalt pavements overlaid with one or two inches of HMA will reflect through the overlay within two to four years (McKeen and Stokes 1997). In addition, while the costs of pavement construction have increased significantly in recent years, available funding has decreased. As a result, there exists a national trend away from overlay and reconstruction to recycling of existing distressed pavements. The trend has been strengthened by the fact that there are more than a million miles of roads in the United States with asphalt surface courses over granular bases, and thus there are a substantial number of opportunities for asphalt pavement recycling.

Asphalt pavement recycling is not a new concept. The technique was initially developed in 1915, but it started gaining popularity since 1975 because it offers reduced costs; geometric preservation; and conservation of aggregates, binders, and energy (Epps 1990). There are several methods to recycle asphalt pavements. One promising and cost-effective recycling method is cold in-place recycling (CIR). This report focuses on the performance evaluation of CIR asphalt pavements.

1.2. Problem Statement

While the performance of CIR roads is generally good, there is some inconsistency. Several years after recycling, some roads are in excellent condition, while more cracking and rutting is observed on other roads. These differing behaviors can be observed on roads constructed in the same county by the same contractor in the same construction season. Therefore, the difference in performance is probably not from such factors as weather, equipment, contractor experience, and construction procedures. Rather, other factors more prominently affect pavement performance, such as the following:

- 1. Age of the recycled pavement
- 2. Cumulative traffic volume
- 3. Support conditions
- 4. Aged engineering properties of the CIR materials

1.3. Purpose of the Study

The objective of this report is to answer the following questions concerning CIR performance:

- 1. What effects do traffic, age, and support conditions have on pavement performance?
- 2. How can these effects be explained by the aged engineering properties of the CIR materials and other factors?
- 3. What changes should be made with regard to design, material selection, and construction in order to improve the performance of future recycled roads?

1.4. Scope of the Study

This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for 24 CIR asphalt roads constructed from 1986 to 2004 at various locations throughout the state of Iowa. Of these 24 projects, 18 projects were selected from a sample of roads studied in a previous research project (HR-392) (Jahren et al. 1998a). The other six projects were selected from newer CIR projects constructed in Iowa after 1999.

1.5. Organization of the Report

This report includes five chapters. Chapter 1 has provided the general introduction and objectives of this study. Chapter 2 consists of a detailed literature review of studies pertinent to cold inplace recycling of asphalt pavements. Chapter 3 describes the methodology of the study. Chapter 4 presents statistical analyses and results. Final conclusions and recommendations are summarized in Chapter 5.

2. LITERATURE REVIEW

2.1. Background

Recycling existing pavement materials for pavement rehabilitation is not a new concept. The technique was initially developed in 1915 (NAPA 1977), and it has gained popularity since 1975 because of the following:

- Construction costs have increased while funding for transportation facilities has been reduced.
- More than one million miles of asphalt roads in the United States need to be rehabilitated. Hence, there are substantial opportunities for recycling.
- Although obtaining aggregates for pavement construction generally is not a problem in the United States, some agencies are concerned about the depletion of aggregate supplies and high costs of extraction and hauling.
- Agencies need to consider zoning restrictions when dumping waste materials. Rather than remove and dump old pavement materials, many agencies are solving this problem by recycling them.
- The asphalt binder contained in existing pavement is a valuable resource. Because of factors such as oxidation, the aged asphalt may have lost some of its original properties, but when combined with new asphalt it can again serve as an effective binder (Asphalt Institute 1983). The reuse of aged asphalt may reduce the amount of new asphalt required for pavement reconstruction.

Recycling of existing pavement materials for rehabilitation purposes offered an effective solution to these problems. Specifically, recycling offered the following major potential benefits compared to conventional techniques:

- Reduced costs
- Preservation of existing pavement geometries
- Conservation of aggregates and binders
- Preservation of the environment
- Energy conservation

Because recycling appeared promising from a wide variety of viewpoints, a number of agencies sponsored recycling research and implementation studies, including the National Cooperative Highway Research Program (NCHRP) (FHWA 1978a; Epps et al. 1980), Federal Highway Administration (FHWA) (Beckett 1977; Brown 1977; FHWA 1978b; FHWA 1977; FHWA 1975; Anderson et al. 1978; FHWA 1978c), the Corps of Engineers for the U.S. Air Force (Lawing 1976), and the U.S. Navy (Brownie 1978). Early research and implementation efforts led to the categorization of four types of pavement recycling:

- Surface recycling
- Cold recycling

- Hot recycling
- Portland cement concrete pavement recycling

The scope of this report is limited to CIR with bituminous binders.

2.2. Cold In-Place Recycling

CIR is defined as a rehabilitation technique in which the existing pavement materials are reused in place (ARRA 1992b). The materials are mixed in-place without the application of heat. In CIR, a portion of the asphalt layer, normally between 75 to 100 mm (3 to 4 in.) is used to produce a base course for generally low- to medium-traffic-volume highways. The steps in CIR consist of preparation of the construction area, milling the existing pavement, addition of a recycling agent and/or new materials, laydown, compaction, and placement of the surface course. The addition of new aggregates may not be necessary in some projects.

2.2.1. Benefits

The benefits of using CIR include the following (Epps et al. 1980; FHWA 1987; Wood et al. 1988; ARRA 1988):

- Significant pavement structural improvements may be achieved without changes in horizontal and vertical geometry and without shoulder reconstruction.
- All types and degrees of pavement distress can be treated.
- Reflection cracking normally is eliminated if the depth of recycling is adequate.
- Pavement ride quality can be improved.
- Hauling costs can be minimized.
- The old pavement profile, crown, and cross slope may be improved.
- High production rates are possible.
- Engineering costs are low.
- Aggregate and asphalt binder are conserved.
- Energy is conserved.
- Air quality problems resulting from dust, fumes, and smoke are minimized.
- CIR is a cost-effective solution for a number of situations.
- Frost susceptibility may be improved.
- Pavement widening operations can be accommodated.
- CIR is environmentally desirable because disposal problems are eliminated.

2.2.2. Problem Areas

Identified problem areas with CIR include the following (Epps et al. 1980; FHWA 1987):

- Curing is required for strength gain.
- The rate of strength gain and the speed of construction are dependent on climatic

conditions, including temperature and moisture,.

• Placement of a wearing surface is required.

Considering the above identified benefits and problem areas, CIR has been mostly used on low-to-medium traffic volume highways as a base course.

2.3. Extent of Use

A nationwide survey of CIR was conducted in early 1987 for ARRA (Wood et al. 1988). While 24 states indicated use of CIR, 5 states indicated that they have placed only experimental test sections, and the remaining 21 states do not use cold recycling. Based on the ARRA survey (Wood et al. 1988), county roads and secondary highways composed equal proportions of CIR projects (31% of responses each). City street projects account for 19%, and primary and Interstate highways compose 12% and 7% shares, respectively (Wood et al. 1988).

The survey indicates that CIR has been used for all types of roads and structural section components. However, some agencies restrict its use. Twenty percent of the ARRA reporting agencies restrict CIR to rural areas; an additional 20% limit use to roads with low traffic volumes. Most agencies limit the use of CIR to base courses (95%). Of these base course projects, 12% placed fog, sand, or slurry seals as surfaces; 33% of the projects were surfaced with aggregate chip seals; and 50% were surfaced with an asphalt concrete. Three states use CIR for shoulder reconstruction on Interstate highways (Wood et al. 1988).

2.4. Construction Methods

A wide variety of equipment and sequence of operations have been used for CIR. A typical CIR sequence consists of nine operations (Epps 1990):

- 1. Pavement sizing
- 2. Addition of new aggregate
- 3. Addition of new asphalt/recycling agent
- 4. Mixing
- 5. Laydown
- 6. Aeration
- 7. Compaction
- 8. Curing
- 9. Application of wearing surface

Many of these operations are operated by a single train. Addition of new aggregate may not be necessary on some projects.

Epps (1990) summarized the construction method using a single-pass equipment train: "Several contractors have developed a single-pass equipment train capable of full-depth and partial-depth CIR. Large quantities of pavement can be recycled daily. The equipment train usually consists of a cold-milling machine, portable crusher, travel-plant mixer, and laydown machine. The

oversized material from the milling operation is sized by the small portable screen and crusher unit. The cold-milling machine's conveyor discharges the recycled asphalt pavement (RAP) into the crusher unit, which passes it over a screen with large sieve sizes. The particular sieve size will depend on the job specifications. The material retained on the screen is rerouted to the roll unit for crushing and then back to the screen. Eventually, 100 percent of the RAP will pass through the screen and onto another conveyor where it can be weighed before being deposited into a pugmill or a paver. The screen and crusher unit can also be fitted with a pugmill and asphalt feeder system for mixing. The recycled mix can then be windrowed directly behind the mixer." This report focuses specifically on the partial-depth CIR technology.

2.5. Performance

A comprehensive nationwide source of information on performance of CIR pavement is not available. The general performance data reported by states that have constructed a number of projects indicate that performance has been mostly good or very good, particularly with respect to cracking (Epps 1990). However, a summary of information from California, Indiana, Iowa, Kansas, Maine, Nevada, New Mexico, New York, Oregon, and Pennsylvania is provided below.

California

In an evaluation study of 13 cold-recycled asphalt pavements constructed between 1979 and 1983, the researchers found that about 70% of the projects have good performance (Forsyth 1985). The poor performance of the rest of the projects was attributed to incomplete mix design and nonuniform distribution of the binder.

Indiana

Roughness, deflection, and visual evaluation made after one year of construction (in 1986) indicated better performance for a CIR mix section compared to a conventional resurfaced pavement (McDaniel 1988). Transverse reflection cracks and longitudinal cracks were found in the conventional HMA pavement but not in the cold-recycled mix section.

Iowa

CIR started in Iowa in 1986 when Clinton County recycled County Road E50 near Andover. A study carried out in 1998 reviewed the performance of CIR pavements. The performance was rated both quantitatively and qualitatively. The study found that most roads were performing well, cold-recycled asphalt is effective in mitigating reflective cracks, and the service life of recycled pavements is predicted to be 15–26 years (Jahren et al. 1998b).

Kansas

Kansas reports that pavements containing cold-recycled asphalt concrete exhibit less reflective cracking if the remaining original mat is the proper thickness (Brown 1989). If the original mat is

too thin, it does not provide a solid base and the equipment can break through into the base, which is often unstable. If the remaining original mat is too thick, it will initiate new reflective cracks at the location of the old cracks.

Maine

Deflection, rut depth, ride quality, and a cracking study have been performed on recycled pavements in Maine (Rand 1978). Based on three years of performance, CIR has virtually eliminated reflective cracking problems and has helped to solve frost problems.

Nevada

Examination of cores and surveys of visual conditions performed after seven years of service revealed areas of bleeding and minor cracking in one cold-recycled project (Epps 1990). A large portion of the project was found to have no distress. The authors mention that the bleeding was probably caused by improper seal coat design and quality control. Examination of another three-year-old project revealed no distress other than joint raveling (Epps 1990).

New Mexico

A total of 120 CIR projects have been constructed in New Mexico since 1984. A recent performance evaluation of 45 projects located throughout New Mexico shows that all of the pavements are providing acceptable performance levels (McKeen and Stokes 1997). Pavement condition surveys have indicated that these pavements will far exceed their assumed service life of 10 years. More than 90% of the projects were found to be in excellent condition, and the rest were in fair to good condition. Comparison of density of cores obtained at the time of construction and at the time of evaluation indicated no significant change in air voids.

New York

A total of four CIR projects were constructed in New York from 1990 to 1992. The four rural road projects total 57 lane-miles, with an average traffic volume range of 500 to 4,300 vehicles per day. All the projects were reported to be performing extremely well in 1992 (Wohlscheid 1995).

Oregon

Results from an evaluation of 52 CIR pavements in Oregon indicated that 47 of the projects had good or very good performance, and only five had poor performance (Allen et al. 1986; Allen 1988; Scholz and Allen 1988; Hicks et al. 1987).

Pennsylvania

The Pennsylvania Department of Transportation had completed about 90 cold-mix recycling projects by the end of 1985 (Kandhal 1987). Experience with these projects indicates a need for obtaining optimum moisture content in the RAP material so that the emulsified asphalt can be dispersed effectively in the mix. Other findings are as follows:

- 1. Recycled mixtures are usually susceptible to damage from moisture intrusion and abrasion by traffic.
- 2. The placement of a surface is necessary to avoid raveling and potholing.
- 3. Projects carrying a significant amount of heavy truck traffic should not be selected for cold recycling.
- 4. Cold recycling should not be attempted if the existing road has inadequate drainage.

2.6. Support Condition

To better understand how pavement layers affect CIR pavement performance, an investigation of the resilient moduli of these layers is recommended (Kearney 1997).

The support condition of a pavement can be assessed in various ways. A standard penetration test (SPT) is the most common strength test conducted in the field (Atkins 1997). Jahren et al. (1999) developed a testing method using a dynamic cone penetrometer (DCP) to assess subgrade stability before recycling. Several studies indicated that a more comprehensive approach is to use the falling weight deflectometer (FWD) data (Zhang 2003; Pibwerbesky 1997; Rahim and Hon 2003; Kim 2002; Irwin 2002). Guidelines for collecting and processing FWD deflection data are available elsewhere (FHWA-LTPP 2000). Some backcalculation software packages can be easily obtained to process FWD measurements and provide estimates of the moduli of the pavement layers (McQueen et al. 2001).

Recently, artificial neural networks (ANN) have been used to evaluate flexible pavement layer moduli (Bredenhahn and van de Ven 2004; Manik 2004; Ceylan and Guclu 2004). However, an ANN algorithm of CIR pavements was not found in the literature review.

2.7. Engineering Properties of CIR Mixtures

The following engineering properties of CIR mixtures are deemed to be important factors that affect CIR pavement performance.

Air Void (V_a)

Air voids decrease with increasing binder content and time. Initial values ranged from about 10% to 15% (Epps 1990; Allen 1988). Other studies showed that the compacted mixture internal void content ranges between 12% and 15% (Epps 1990; Bertaud 1993; Zeisner 1995).

Croteau and Lee's (1997) study showed that, with similar air voids, CIR mixtures had significantly greater fatigue lives than standard HMA mixtures. This indicated that a CIR mixture may behave more like an open-graded mixture rather than a dense-graded mixture (Scholz et al. 1991). Open-graded mixtures are known to provide more fatigue resistance but less stiffness in comparison to densely graded HMA mixtures (Hicks et al. 1995).

Resilient Modulus

Resilient moduli were obtained on cores from seven projects in Oregon. These results showed that resilient modulus values in the range of 150,000 to 600,000 psi were obtained. Resilient moduli are also affected by the stiffness of RAP asphalt (Allen 1988; Scholz and Allen 1988).

Indirect Tensile Strength

A strong correlation between rutting potential and indirect tensile (IDT) strength was found by Anderson et al. (2003). In another study, indirect tensile testing has been used to specify maximum cracking temperatures for CIR projects (Thomas and Kadrmas 2003).

Lauter's (1998) study indicated that indirect tensile strength increases for all samples as the temperature decreases.

Abd El Halim (1985; 1986) showed that during compaction, the top layer will crack due to the influence of the relative rigidity of the underlying layer. Furthermore, Abd El Halim (1985; 1986) showed that as the stiffness of the layer immediately under the layer that is being compacted increases, the number of construction induced cracks increases. Applying this concept to the CIR process, it seems that as the CIR material is being compacted on top of the subgrade, very few construction cracks are induced. After compaction of this layer, a hot asphalt overlay is placed at approximately 130°C (266°F). The temperature-sensitive CIR layer has very little strength at high temperatures. Thus, compaction of the HMA layer occurs over a layer that is less relatively stiff, again causing few construction-induced cracks.

Aggregate

Aggregate quality is important in crack resistance. Aggregates with low absorption, high abrasion resistance, and high tensile strength have a greater resistance to cracking (Shalaby 1997).

2.8. Economics

CIR has proved to be a cost-effective method of pavement rehabilitation. When properly selected, CIR is usually more economical than the conventional rehabilitation methods. A review of the reports from FHWA Demonstration Project 39 (Epps 1990) indicates the following component costs for CIR operations:

- Materials, 46.6%
- Equipment, 29.7%
- Labor, 23.7%

The main economic advantage that recycling offers is in material cost savings. The majority of the material costs are associated with new binder. The addition of new aggregate will increase recycling costs.

Studies have shown that the representative cost of CIR varies from approximately $1.71/m^2$ ($1.37/yd^2$) to $9.87/m^2$ ($7.90/yd^2$) depending upon many factors, such as depth of recycling, equipment type, and thickness of overlay (FHWA 1987). The initial savings have varied from 6% to 67%.

It should be noted that recycling costs have changed over the years because of continual developments in the recycling technology and equipment.

2.9. Summaries

A review of current literature shows that savings up to 67% can be achieved by using CIR. In addition to the material and construction cost savings, a significant amount of cost savings can be realized by reducing the interruptions to traffic flow below the levels of conventional rehabilitation techniques. Recycling can be used to rejuvenate a pavement or correct mix deficiency and conserve material and energy, benefits that are not available with the conventional paving techniques. In addition, CIR projects are sometimes placed in a classification that does not require the major changes in road geometry that are sometimes required to bring roads up to the latest design standards. By comparison, a reconstruction project may require more such changes that may increase the cost.

In the CIR process, existing in-place materials are mixed with recycling agents and/or new or reclaimed materials without the application of heat. The method can be used to eliminate a variety of distresses such as rutting, cracking, and irregularities.

The CIR process can be carried out using an equipment train that includes machinery to perform the complete process, including milling, crushing, screening of the RAP, and mixing. The mix also requires aeration before compaction to reduce the excess fluid content by evaporation. Although CIR mix produces a stable surface, a wearing surface consisting of hot mix asphalt or a seal coat is normally required because the recycled surface is not adequately resistant to abrasion by traffic and intrusion by moisture.

2.10. Glossary

- Recycling. Reuse of existing materials to produce new materials.
- Recycling agent. Organic materials with chemical and physical characteristics selected to restore aged asphalt to desired specifications.

- Rehabilitation. Work undertaken to extend the service life of an existing facility, including placement of additional surfacing material and/or other work necessary to return an existing roadway, including shoulders, to a condition of structural or functional adequacy.
- Fog seal. A method of adding asphalt to an existing pavement surface to improve sealing or waterproofing, prevent further stone loss by holding aggregate in place, or simply improve the surface appearance.
- Sand seal. A thin asphalt surface treatment constructed by spraying a bituminous binding agent and immediately spreading and rolling a thin, fine aggregate cover (e.g., sand or screenings).
- Slurry seal. A petroleum-based emulsion product, mixed with fine aggregate rock, blended on-site in a large truck, and then applied evenly across the entire surface of an asphalt street.
- Raveling. Wearing away of the pavement surface caused by the dislodging of aggregate particles and loss of asphalt binder.

3. METHODOLOGY

3.1. Overview

CIR provides an economical rehabilitation strategy that mitigates crack reflection by pulverizing the asphalt pavement surface, thus destroying the old crack pattern in the recycled layer. In 1998, the Iowa Department of Transportation (Iowa DOT) and Iowa Highway Research Board initiated an evaluation of the performance of CIR asphalt cement concrete roads (HR-392) (Jahren et al. 1998a). Research results from 18 sample roads showed that CIR retarded the development of transverse cracking (reflected cracks). Additionally, CIR roads within the state of Iowa and with an annual average daily traffic (AADT) of less than 2,000 were predicted to have an average service life of 15 to 26 years.

However, recycled roads have inconsistent performance. This present study will investigate how aged engineering properties of the CIR materials, traffic volume, and other factors affect pavement performance. The flow chart of the study's methodology is shown in Figure 3.1.

Figure 3.1. Flow chart of the study

3.2. Data Collection and Processing

For this study, researchers investigated performance of 24 CIR roads, including 18 roads from the previous research (Jahren et al. 1998a) and 6 newly recycled pavements. The researchers conducted a geographically balanced sampling in Iowa, such that the 24 roads were selected to represent various geographic regions of the state, project ages, traffic levels, and support conditions. In order to evaluate the pavement performance, the following data from each road was collected, processed, and analyzed based on the same standard as the previous research (Jahren et al. 1998a):

- Qualitative and quantitative distress data
 - Appearance of pavements and rideability
 - Length of longitudinal/transverse cracks
 - Width of longitudinal/transverse cracks
 - Area of rutting/alligator crack/block crack/edge crack/patching
- Support conditions as inferred by pavement deflections
- Engineering properties of CIR materials obtained by coring asphalt samples and conducting lab tests

The collection and processing of these data are described in the following sections.

3.2.1. Interviews

The present researchers interviewed construction superintendents, foremen, laborers, county engineers, and material suppliers who were working on the following CIR projects in the summer of 2004. These projects included the following:

- P-33 in Webster County
- IA-175 in Hardin County
- County Road 299 in Hardin County
- S-14 in Story County
- S-27 in Story County

The construction procedures, recorded productivities, and interviewed construction personnel were observed to identify prominent issues that the contractors faced on the job sites. Although this information was not used in the data analyses, it provided context for understanding possible interactions among CIR pavement performance, mix design, construction methods, and materials.

3.2.2. Survey

In 1998, pavement distress surveys of 18 sample roads were conducted, and the present serviceability index (PSI) and pavement condition index (PCI) of each road were calculated. Then, the performance of each of the CIR pavements was evaluated (Jahren et al. 1998a). In

2004, researchers obtained the same types of data from the 18 roads under new conditions. It was of particular interest to analyze the performance of pavements in 1998 and the performance of the same pavements in 2004. It is expected that this longitudinal study will enable researchers to describe pavement performance patterns and changes over time and better understand factors that lead to good or poor performance.

One of the most important assumptions for a longitudinal study is that factors, other than those considered in the study, should remain the same or have minimum changes over time. This helps researchers narrow down the selection of factors and focus on several factors that are deemed to be important. For example, it is assumed that the percentage of truck traffic, a factor that increases the rate of pavement deterioration, remained constant from 1998 to 2004. In order to find out whether factors other than those studied had significantly changed, the researchers sent out a questionnaire (Appendix A) to all of the eight jurisdictions that maintained the roads. The survey inquired about the levels of traffic (including truck traffic), support condition, and other changes that may have occurred since 1998. Table 3.1 summarizes the results of the survey. After reviewing the results, the researchers decided that none of the changes on these 18 roads were large enough to invalidate the assumption that there were no important changes during the time of the longitudinal study.

3.2.3. Pavement Distress Survey

The pavement distress survey in this study was conducted by researchers at the University of Iowa. Complete details of this effort are presented elsewhere (Lee et al. 2006), but a summary is presented in the following narrative. The following data was collected for the pavement survey:

- Length of longitudinal/transverse cracks
- Width of longitudinal/transverse cracks
- Area of rutting/alligator crack/block crack/edge crack/patching

Most of the distress survey was conducted using an automated image collection system (AICS). The AICS system consists of an off-the-shelf area scan digital video camera mounted on a vehicle, a data management interface (DMI), and a portable computer with an image processing board. The digital camera is able to capture images of the pavement surface, at a predetermined interval controlled by the DMI, while the vehicle is traveling at highway speed during daytime hours. The images are then stored in the computer for further processing.

Because the AICS system cannot capture pavement profile, rutting was measured manually using a portable rutting gauge. The rutting was measured in both the inner and outer wheel paths in two lanes at every 15.24 m (50 ft.) from each 457.2 m long (1,500 ft. long) test section. If, at one location, the rutting is deeper than 6.35 mm (1/4 in.), 7 m² (75 ft²) of rutting area is recorded. Seven m² (75 ft²) is calculated by multiplying wheel path width, 457 mm (1.5 ft.), by the interval between rut depth measurements, 15.24 m (50 ft.). A typical test section is 457.2 m (1,500 ft.) long. Thus, the sum of rutting area is divided by 15 to obtain an average rutting area (ft²) per every 100 ft. station. The location of each test section can be found in Appendix B.

County Road		Support/drainage condition	Traffic volume	Truck	Changes since 1996	
Boone	E-52	Same as others	310~390 VPD (Vehicle Per Day)	5~10%	No	
Boone	198th	Poor drainage	130 VPD	5%	No	
Butler	T-16	80% of all the paved roads has been recycled in the past 14 years.	This road has a little higher percentage of truck traffic than the normal county road since it connects Highway 3 and Highway 57.		No	
Cerro Gordo	B-43	Fairly good support and drainage. Planning to widen shoulders and overlay this road in 2005	300~700 VPD	10%, no unusual amt of truck traffic	No	
Cerro Gordo	S.S	Poor drainage in certain areas. Shoulders are eroding and deteriorating. Road needs to be widened.	1,140~4,200 VPD (High traffic in summer due to Clear Lake resort traffic)	< 9%	No	
Clinton	E-50	PCC roads in Clinton County have edge drains but HMA roads don't. This section of road is well drained due to the hilly terrain.	AADT=540 (2002 data). A large dairy operation is located nearby and generates a significant amount of milk and waste product hauling.	Slightly higher than 9%	No	
Clinton	Z-30	HMA roads don't have edge drains like PCC roads do in Clinton County. This road located in flat terrain and the overall drainage is fair	AADT=910 (2002 data)	9%	No	
Hardin	D-35	This section is comparable to other sections of roads in Hardin County.	D-35 has served as a short- cut for Highway 20 traffic, and during the period between completing Highway 20 to Iowa 65 and Highway 14. Therefore, traffic volumes were running in the neighborhood of 1,500 VPD with an abnormally high secondary road percentage of trucks.	was high	The road condition has remained fairly stable since 1996. The traffic volume has dropped to the normal 600 VPD since the opening of US20 last Aug.	
Musc- atine	F-70	Good/average	AADT=1250 (2002 data)	N/A	No	
Musc- atine	G-28	Fair/average	AADT= 960~1100 (2002 data)	N/A	No	

County	Road	Support/drainage condition	Traffic volume	Truck	Changes since 1996	
Musc- atine	Y-14	Poor/very poor	AADT=1160~1490 (2002 data)	N/A	No	
Tama E-66 E66 road is general roads and occasiona with culv and wate road. Thi debris an is flat fro the river. road is du		E66 road lays in an area that is generally flatter than other roads and that we occasionally have trouble with culverts being plugged and water running over the road. This is caused by debris and by drainage that is flat from the road south to the river. But the bulk of the road is drained reasonably well, with good ditches.	Same as before	Same as before	No	
Tama	V-18	Same as others	Same as before	Same as before	No	
Winne- bago	R-34	Support and drainage are about the same as most of the other paved roads in the county.	270~490 VPD	About 9%	Cracks are routed and sealed. It is scheduled for an ACC overlay in 2009.	
Winne- bago	R-60	Drainage is similar to most of our paved roads. Support is somewhat less due to possible problems with an underlying peat layer in some areas of the roadway.	540 VPD, Truck traffic has decreased since the coop elevator closed in Scarville.	About 7%	We have routed and sealed cracks. We are planning an ACC overlay in 2008.	

Table 3.1. Continued

Since the captured digital images contain visual information of distresses, the following factors can be quantitatively determined using a computer software package, the Manual Image Analysis System (MIAS) (Kim and Lee 2006):

- Length of the longitudinal/transverse cracking (average, in. per 100 ft. station),
- Width of the longitudinal/transverse cracking (largest number in one test section, in.)
- Area of alligator/block/edge cracking (average, ft² per 100 ft. station)
- Area of patching (average, ft² per 100 ft. station)

As shown in Figures 3.2 and 3.3 (Lee et al. 2006), the longitudinal/transverse crack can be traced using a pen tool, and the length of the crack can be calculated; the area of alligator cracking can be measured using a polygon tool. The width of cracks can also be measured from the enlarged image.

Figure 3.2. Length and width measurement of distresses using MIAS

Figure 3.3. Area measurement of distresses using MIAS

The research team at University of Iowa collected and processed the pavement distress data. They then calculated PCI according to a method established by U.S. Army Corps of Engineers (Shahin and Walther 1990) and calculated PSI, by a method by the American Association of State Highway Transportation Officials (AASHTO 1993). In this study, PCI was used to represent performance of CIR pavements because PSI is subjective in nature.

PCI was calculated using MicroPAVER, a software package developed by the Construction Engineering Research Laboratory of the U.S. Army Corps of Engineers (CERL 2007).

The summary of the pavement distress data is shown in Tables 3.2 through 3.4. In the tables, "First" represents data collected from the previous study (Jahren et al. 1998a), and "Second" represents data collected in the current study.

	Longitudinal (ft)		Transverse (ft)		Alligator (ft ²)		Block (ft ²)		
Road	First Second		First	First Second		First Second		First Second	
Boone 198th	27	21	5	24	50	240	0	0	
Boone E52	0	42	19	25	0	0	0	0	
Butler T16	0	1	8	11	0	0	0	0	
Calhoun IA175	0	47	10	22	0	191	0	6	
Cerro Gordo B43	105	162	41	167	0	0	232	14	
Cerro Gordo SS	31	31	44	49	0	149	14	0	
Clinton E50	16	172	51	64	0	136	0	0	
Clinton Z30	0	452	16	61	0	30	0	43	
Greene IA144	33	61	64	109	0	385	0	13	
Guthrie IA4	0	0	6	25	0	0	0	0	
Hardin D35	0	37	83	85	0	30	180	0	
Muscatine F70	0	34	0	7	0	0	0	0	
Muscatine G28	8	257	21	73	0	0	19	9	
Muscatine Y14	34	173	70	248	0	24	0	274	
Tama V18	0	1	9	12	0	0	0	0	
Winnebago R34	2	31	89	64	0	0	0	0	
Winnebago R60	0	0	0	0	0	0	2200	2200	

 Table 3.2. Distress survey of old test sections (per 100 feet)

	v			/	`I	
	Rutt	ing (ft ²)	Ed	ge (ft)	Patching (ft	
Road	First	Second	First	Second	First	Second
Boone 198th	80	140	4	4	0	0
Boone E52	0	0	28	31	0	0
Butler T16	0	0	0	32	0	0
Calhoun IA175	0	55	0	4	0	0
Cerro Gordo B43	25	5	0	0	0	0
Cerro Gordo SS	5	0	0	0	0	2
Clinton E50	30	60	0	42	0	84
Clinton Z30	0	0	0	0	0	0
Greene IA144	60	65	0	36	0	0
Guthrie IA4	0	0	0	0	0	0
Hardin D35	5	20	0	4	0	0
Muscatine F70	0	5	0	4	0	0
Muscatine G28	0	10	0	1	0	65
Muscatine Y14	25	45	0	5	0	153
Tama V18	0	0	0	4	0	0
Winnebago R34	0	10	0	0	0	0
Winnebago R60	0	10	0	0	0	0

Road	Longitudinal (ft)	Transverse (ft)	Alligator (ft ²)	Block (ft ²)	Rutting (ft ²)	Edge (ft)	Patching (ft ²)
Carroll N58	0	0	0	0	0	0	0
Carroll N. of Breda	0	7	0	0	0	3	0
Delaware US20	52	0	10	0	0	0	0
Harrison IA44	0	1	0	0	0	0	0
Jackson US61	0	0	2	0	35	0	0
Montgomery IA48	0	0	0	0	0	0	0
Story S14	0	0	0	0	0	0	0
Story S27	0	0	0	0	0	0	0

 Table 3.4. Distress survey of new test sections (per 100 feet)

3.2.4. Support Condition

3.2.4.1. Evaluating Support Condition using FWD

As mentioned in Chapter 1, the support condition of asphalt pavements is one of the prominent factors that affect pavement performance. To understand the procedures for evaluating support conditions, a better understanding of pavement structure and evaluation technologies is first necessary.

3.2.4.2. Pavement Structure

A pavement structure (Figure 3.4) that includes CIR is a flexible pavement because the total pavement structure deflects under traffic loads. Like other typical flexible pavements, a CIR pavement structure consists of several material layers:

- 1. Surface layer
- 2. Base layer
- 3. Subbase layer
- 4. Subgrade layer

The surface layer supports the tire loads; provides smoothness, rut resistance, noise control, friction and drainage; and prevents surface water penetration. For a CIR pavement, the surface layer usually has three sub-layers: a wearing course, a CIR layer, and a layer of original HMA pavement that was not recycled.

The base layer provides additional load distribution and contributes to drainage and frost resistance. This layer is usually constructed with unbound aggregate.

The subbase layer functions similarly to the base layer. It consists of materials that are of lower quality than those in the base layer.

The subgrade layer has the lowest load carrying capacity. It consists of the least expensive materials, typically the existing soil upon which the pavement structure is placed. The subgrade layer provides structural support for all the materials above it.

For the purpose of backcalcuating FWD measurements (described in detail in a following section) to infer pavement support conditions, a three-layer pavement structure (Figure 3.4) is defined. The three layers are as follows:

- 1. HMA layer
- 2. CIR layer
- 3. FND layer

The FND layer, meaning the foundation layer, consists of all material layers beneath the CIR layer, working as a structural support for the layers above.

Figure 3.4. Pavement structure

3.2.4.4. Available Methods for Evaluating Pavement Structure

The pavement structure can be evaluated using the following methods.

Dynamic Cone Penetrometer (DCP). According to the literature, the first documented DCP, also known as the Scala penetrometer, was developed in 1956 in South Africa in response to the need for a simple and rapid device for measuring the performance of subgrade soils (Scala 1956; Melzer and Smoltczyk 1982; McGrath 1989; McGrath et al. 1989; Mitchell 1988). The DCP consists of a steel rod with a steel cone attached to one end driven into the pavement structure or

subgrade using a sliding hammer (Figure 3.5). Material strength is measured by the penetration (usually in millimeters or inches) per hammer blow.

The DCP was not extensively used in the United States in the early 1980s (Ayers 1990). However, in the last few years, some state transportation authorities have shown considerable interest in the use of the DCP, for several reasons (Burnham and Johnson 1993; White et al. 2002). First, the DCP is adaptable to many types of evaluations. Second, there are few currently available rapid evaluation techniques. Third, the DCP is portable and cost-effective.

Although the DCP has been used widely in the United States, it has some disadvantages:

- 1. It takes a significant amount of physical effort to operate the DCP. In addition, data collection is time consuming (Figure 3.6, from http://www.mrr.dot.state.mn.us/images/research/DCP/Manual1.jpg).
- 2. Moisture content, gradation, density, and plasticity can cause large variability in DCP rest results (Kleyn and Savage 1982; Hassan 1996).
- 3. Some of the existing strength relationships are only applicable to certain subgrade material types and conditions. All cases are not covered.

Figure 3.5. DCP scheme

Figure 3.6. DCP operation

Engineers have recognized that the magnitude and shape of pavement deflection is a function of traffic, pavement structural section, temperature, and moisture (Hveem 1995; Hveem et al. 1962). Therefore, many characteristics of an HMA pavement can be determined by measuring its deflection in response to load, nondestructively. Several devices had been developed that can simulate the timing and amplitude of a moving wheel load and provide pavement vertical deflection (Heukelom and Foster 1960; Heukelom and Klomp 1962; Nijboer and Metcalf 1962; Scrivner et al. 1962). These devices are introduced in the following sections.

Static Deflection Measurements. Static tests use a stationary, non-time-variant force to simulate the wheel load. Some examples follow.

The Benkelman Beam. In 1953, A.C. Benkelman of the U.S. Bureau of Public Roads (now the Federal Highway Administration) designed the Benkelman Beam. The beam was first used at the WASHO Road Test (HRB 1955), and was used extensively at the AASHTO Road Test (Irwin 2002). The beam measures the deflection between the two rear tires on a dump truck with a standard axle load (Figure 3.7). The load is applied or removed slowly, over a period of several seconds, which results in deflections. To obtain accurate readings with the beam, the deflection region of a pavement must be limited to a radius of less than 8 ft. around the loading point. Otherwise, the support system for the beam is in the deflection basin, resulting in a measurement that underrepresents the actual deflection.

Figure 3.7. Benkelman Beam scheme

Dynamic Deflection Testing. Another class of deflection testing methods uses a dynamic force to generate pavement deflections.

The Dynaflect. The Dynaflect was first introduced in 1964 by the Lane-Wells Company (Scrivner et al. 1966). The Dynaflect is a trailer-mounted device that uses two eccentric rotating masses to generate a vertical force (Figure 3.8). This dynamic force is then applied to the pavement through two steel wheels. The deflections induced by this force are measured with five sensors.

Figure 3.8. Dynaflect scheme

The Road Rater. The Road Rater functions in a manner that similarly to the Dynaflect, in that it is trailer-mounted, it applies dynamic forces to the pavement, and it measures the deflections with an array of sensors. The Road Rater uses a hydraulic system to raise and lower a mass in order to generate the vertical force. The frequency and magnitude of the dynamic force can be adjusted on the Road Rater (Figure 3.9, from http://www.labellemarvin.com/testing.html).

Figure 3.9. Road Rater

The Falling Weight Deflectometer. The FWD was first developed in Europe, and is now widely used in the United States. Isada (1966) first reported the application of a falling mass device to measure the strength of flexible pavements in the United States. From France and Denmark, Bonitzer (1967) and Bohn et al. (1972) described the use of a FWD. Since then, further development efforts have improved the FWD. Computerized data collection was added in 1981. Full computer control of FWD operation was available in 1982. The current models of the FWD are able to display and record the time history of the load pulse, along with air and pavement temperature measurement, electronic distance measurement, and global positioning system (GPS).

The FWD can either be mounted in a vehicle or on a trailer and is equipped with a weight sensor and several velocity transducer sensors, as shown in Figure 3.10 (from http://www.civil.port.ac.uk/ projects/hmaint/struct.htm), Figure 3.11 (from http://www.creig.gci.ulaval.ca/appareillage/document_view), and Figure 3.12 (from http://www.asnt.org/publications/materialseval/basics/jul04basics/jul04basics.htm). To perform a test, the vehicle is stopped and the loading plate (weight) is positioned over the desired location. The sensors are then lowered to the pavement surface, and the weight is dropped; this produces a dynamic impulse load that simulates a moving wheel load (typically lasting 25 to 30 ms), and the surrounding pavement vertical deflection is recorded with velocity transducers (seven or more). These are mounted on a bar and automatically lowered to the pavement surface with the loading plate.
The resulting deflections form a shallow basin in the pavement. The depth and shape of the "deflection basin" is used to calculate the material properties of the pavement layers (Figure 3.10). These properties are used to estimate the stress and strain conditions within the pavement structure under the current and expected future traffic conditions. The magnitude of these stresses and strains are used to estimate the resilient moduli of the pavement and support layers. This information, in turn, is used to evaluate whether the pavement can meet its expected design criteria.

Figure 3.10. FWD scheme

Figure 3.11. FWD equipment

Figure 3.12. Typical location of loading plate and deflection sensors*

*Note: The Federal Highway Administration's long term pavement performance study specifies deflection sensor spacing at 0, 0.2, 0.3, 0.5, 0.6, 0.9 and 1.5 m (0, 8, 12, 18, 24, 36 and 60 in.) for its testing programs.

Advantages of using the FWD are that it provides (a) nondestructive evaluation, (b) high productivity (up to 60 test points per hour), (c) realistic pavement loading levels, (d) rapid data acquisition and the ability to develop a deflection basin, and (e) its capacity to be applied to many types of pavement.

However, the initial costs for the FWD equipment are higher, and the equipment is more complex than the abovementioned methods. In addition, there are three main source of errors associated with the FWD test (Irwin 2002), though actions may be taken to reduce these errors, shown in Table 3.5.

Type of errors	Remedy actions
Seating errors	Applying one or two drops in order to seat the sensors
Random deflection errors	Take multiple readings and average the result
Systematic errors	Calibrate the device every time before use

Table 3.5. Main errors and remedy actions with the FWD test

It is difficult to compare the advantages and disadvantages among the various devices because each of the devices applies a different type of force and frequency to the pavement. Additionally, the pavement and subgrade conditions differ from site to site, and thus the responses are different. Therefore, the summaries below (Tables 3.6, 3.7, and 3.8) are limited to the mechanistic differences between the various testing methods.

Deflection testing method	Type of force	Force level	Frequency range	Force measurement method
Benkelman Beam	Static	23-45 KN (5-10 kip)	9 Hz	Dead weight on wheels
Dynaflect	Dynamic	8/9 KN (2 kip) peak-to- peak	8 Hz	Inertial
Road Rater	Dynamic	2.2-3.6 KN (0.5-8 kip) peak-to-peak	5-70 Hz	Load cell
FWD	Dynamic	4.45-156 (1-35 kip) KN	0-60 Hz	Load cell

Table 3.6. Forces applied to the pavement by various testing methods

 Table 3.7. Deflection measurement methods used by various testing methods

		Deflection measured	
Deflection testing method	Deflection reference	at point of force applications?	Number of sensors
Benkelman Beam	Elevation datum	Yes	1
Dynaflect	Inertial	No	>= 5
Road Rater	Inertial	Yes	>= 5
FWD	Inertial	Yes	>= 7

Table 3.8. Summary of efficiency of deflection measurement methods

Deflection testing method	Crew size	Maximum daily production
Benkelman Beam	3	50-100 test locations
Dynaflect	1-2	100-400 test locations
Road Rater	1-2	100-400 test locations
FWD	1-2	100-300 test locations

3.2.4.4 Evaluation of the Support Condition in This Research Project

The FWD was chosen for this research to evaluate support condition (ASTM D4694-96) because it is the support condition measurement device that is commonly used by the Iowa DOT. The Iowa DOT has used several devices to evaluate the pavement performance. The Benkelman Beam was initially used, and then it was replaced by the Road Rater in 1985. The Road Rater has been used to collect structural strength data at the network level since then. Recently, the Iowa DOT has been phasing out the use of the Road Rater and moving toward the use of the FWD. The reasons are that (a) the technology of the Road Rater has become obsolete and (b) the manufacture of the Road Rater, Foundation Mechanics, does not provide technical support for the device because its production line has moved into the FWD products. Also, even though the FWD has lower productivity than the Road Rater, it provides results that are much more reliable to Iowa DOT engineers. However, because appropriate data analysis software has not been fully developed as of this writing, the FWD is used primarily for project-level investigations in Iowa.

For this research project, the Special Investigations team at the Iowa DOT used a FWD machine (model JILS-20, manufactured by Foundation Mechanics, Inc.) to conduct the FWD tests on 24

roads on the dates listed in Table 3.9 (sorted by testing date) and Table 3.10 (sorted by road name).

Date of testing	Number of roads tested	Roads
12/13/04	6	Boone 198th, Boone E52, Muscatine F70, Muscatine G28, Muscatine Y14, Tama V18
12/14/04	6	Cerro Gordo B43, Clinton E50, Clinton Z30, Delaware US20, Jackson US61, Winnebago R34
12/15/04	6	Cerro Gordo South Shore, Calhoun IA175, Carroll N of Breda, Harrison IA44, Montgomery IA48, Winnebago R60
03/30/05	3	Butler T16, Hardin D35, Story S14
03/31/05	3	Carroll N58, Greene IA144, Guthrie IA4

Table 3.9. Dates of FWD tests (sorted by the testing date)

Table 3.10. Dates of FWD tests (sorted by road names)

FWD date
12/13/2004
12/13/2004
3/30/2005
12/15/2004
3/31/2005
12/15/2004
12/14/2004
12/15/2004
12/14/2004
12/14/2004
12/14/2004
3/31/2005
3/31/2005
3/30/2005
12/15/2004
12/14/2004
12/15/2004
12/13/2004
12/13/2004
12/13/2004
3/30/2005
12/13/2004
12/14/2004
12/15/2004

The FWD measurements were taken in the winter, even though it is not the best season to conduct these tests. (In the winter, the base and subgrade are frozen and become stiffer than they are in the warmer weather, and thus moduli measured in the winter are higher than the normal working moduli.) This was because winter was the only time that the FWD was available to perform the tests for this research project. The Iowa DOT engineers and equipment are usually occupied during warmer months with other projects, such as conducting network-level pavement surveys (covering the entire system every three to five years).

The sensor layout of the FWD used for this research is illustrated in Figure 3.13.

Figure 3.13. Sensor layout for the FWD used in this study

The JILS-20 was operated over a 1,500 ft. long section of each test road. The loading plate was dropped every 100 ft., and the deflections from eight sensors were collected. There were total of 16 drops on each road. Figure 3.14 shows the locations of cores. An example of raw FWD data is shown in Figure 3.15.

Figure 3.14. Locations of cores

<u>File Edit Format View Help</u>							
Date-Time: 12-13-2004 8:36: 9 Sensors: 096011F04 096012F04 09 weight/spring: 3 Location: boone co Temp: 10 Operator:	96013F04 096014	4F04 096015F	04 096016F04	096017F04	096018F04	096019F04	
Comments: 1 1 0.000 1 9.14 14.12 12.74 1	L1.24 9.39 7.7 itude =	79 5.34 3.5	1 2.57 10.93	21.2			
2 1 105.000 1 8.81 13.35 12.39 1	11.15 9.48 7.9 itude =	96 5.44 3.5	2.43 10.84	20.9			
3 1 211.000 1 9.35 15.91 14.26 1	12.30 9.94 7.9 itude =	90 5.04 3.1	.6 2.37 11.82	20.9			
4 1 304.000 1 9.42 12.68 11.75 1 GPS Position: Latitude = Longi Note:		75 4.38 2.8	2.15 9.45	21.2			
5 1 402.000 1 9.27 15.28 14.84 1 GPS Position: Latitude = Longi Note:		03 5.00 3.0	9 2.44 11.74	21.2			
6 1 503.000 1 9.20 13.40 13.30 1 GPS Position: Latitude = Longi		L8 5.50 3.5	3 2.64 11.41	21.2			

Figure 3.15. FWD raw data

Most of the data is self-explanatory, except the following highlighted date lines.

These can be explained as follows:

- Temp: Air temperature, °F
- 1: Test #
- 1: Lane index. 1=Driving Lane, 2=Passing Lane
- 0.000: Test location (ft.)
- 1: Direction index. 1=Northbound or Eastbound, 2=Southbound or Westbound
- 9.14: Actual load (kips)
- 14.12 10.93: Deflections from sensors
- 21.2: Temperature of pavement surface, °F

The raw data files generated by the JILS-20 cannot be read by the various computer packages that process FWD data. Therefore, it must be converted into a more common file format, such as *.fwd. A converter developed by Gary Sanati of Foundation Mechanics, Inc. resolved this issue by converting the JILS file into the *.fwd format. The user interface of the converter is shown below in Figure 3.16.

_	JILS Data File To Conve	ert Into Dynatest Format	_	
°C:\[Documents and Settings\chen\My [Documents\CIR\FWD\7-18-	6	
	Number Of Deflection Sensors	Load Plate Radius		
	3	6.0		
	X Axis Sense	or Distances		
20	12 24 236 4	8 2 60 2 72 2 0	40	
6)0	÷ 12 ÷ 24 ÷ 36 ÷ 4	8 7 60 72 72 0	6)0	

Figure 3.16. FWD raw data converter

Several computer packages were tested for processing the converted data. The packages include the following:

- ELMOD, from Dynatest Consulting, Inc. (http://www.dynatest.com/)
- MichBack, from the Michigan Department of Transportation and the University of Michigan's Transportation Research Institute (http://www.egr.msu.edu/~harichan/software/michback)
- BAKFAA, from the Federal Aviation Administration (http://www.airporttech.tc.faa.gov/ naptf/download/index1.asp)
- FWDAREA, from the Washington State Department of Transportation (http://www.wsdot.wa.gov/biz/mats/pavement/FWDAREA)
- PCASE, from the U.S. Army Corps of Engineers (https://transportation.wes.army.mil/ triservice/pcase)

Only FWDAREA could recognize the converted file correctly. The other packages could not read the file. However, FWDAREA failed to normalize the weight of the load plate.

ANNs have been used to predict the support condition of various types of pavements. Researchers at Iowa State University developed an ANN algorithm for flexible pavements in Iowa (Ceylan and Guclu 2004). This algorithm was used to analyze the FWD data for this project; however, the results were counterintuitive. One reason was that the algorithm was not designed for the CIR pavement structure specifically. A second reason was that this algorithm requires accurate input of all layer thicknesses. In some cases where accurate measures of actual thicknesses were not available, an approximated thickness was used; this approximation may have compromised the results.

BACKFAA was then chosen to analyze the FWD raw data because of its consideration of layer thickness and the user's control over the error level. Figure 3.17 shows the interface of the software. This program attempts to match the calculated deflection curve with the actual

deflection curve by minimizing the mean square errors. The program required manual input of the FWD deflections, and the results were satisfactory.

😧 BAKFA	A - FAA Backca	lculation (0	3/24/04) v	with LEAF	(06/11/03	B)				
Layer Number	Young's Modulus 517,500	Poisson's Ratio 0.35	Interface Parameter (0 to 1.0) 1.00	Thickness inches	Layer Changea	ble Load I	FWD File	No	FWD File Distance	Type Load
2	315,833	0.45	1.00	4.00	V	Load	Structure			
3	6,100	0.55	1.00	0.00	$\overline{\mathbf{v}}$					
4	0	0.0000	0.0000	0.0000		Sa <u>v</u> e	Structure			
5	0	0.0000	0.0000	0.0000	Γ					
6	0	0.0000	0.0000	0.0000		<u>B</u> acko	calculate			
7	0	0.0000	0.0000	0.0000						
8	0	0.0000	0.0000	0.0000		Stop Ba	ckcalculate			
9	0	0.0000	0.0000	0.0000						
10	0	0.0000	0.0000	0.0000		Show	v <u>O</u> utput			
Sensor							Delete			
Offset, in		3 4	5		7		□ negative offset			
Defl, mils	0.00 8.00	12.00 18.0 9.87 8.3		35.00 4	18.00		sensors			
Calc, mils	36.45 31.19	9.87 8.3		12.40	8.44		Evaluation Depth, inches			
	00.40 01.10	27.40 22.3	0 1 10.00	12.40	0.44		24			
	40									
	40 30					Plate Radius, in	Plate Load, lb			
	20-					6 Function RMS,	10120 Iteration		Select Loa and Run L	
	10				-	mils	Number		and <u>h</u> un L	CAF
					=	15.5888	14 (Done)		<u>E</u> xit	

Figure 3.17. BAKFAA interface

Dr. Hosin "David" Lee from the University of Iowa suggested the initial inputs shown in Table 3.11 for BAKFAA. A summary of the results is provided in Appendix E.

	Young's modulus	
Layer	(psi)	Poisson's ratio
HMA	450,000	0.35
CIR	250,000	0.40
FND	5,000	0.45

3.3. Laboratory Test Methodology

The first draft for this methodology section was developed by Sunghwan Kim, a graduate student at Iowa State University who was included in the project team for the laboratory investigation portion of the study. The present authors edited the draft and have included it in this report.

For each selected road, 6 cores (4 in. in diameter) were typically taken by an Iowa DOT special investigation crew. The total number of cores was 182, including 8 cores for two sections and cores that were taken from both lanes of one test section (Figure 3.18). These cores were transported to Iowa State University's asphalt laboratory, where laboratory tests were conducted. The laboratory testing effort was divided into three phases:

- 1. Mixture properties testing
- 2. Asphalt binder properties testing
- 3. Aggregate properties testing

3.3.1. Preliminary Issues

In order to develop a protocol for lab testing, the research project steering committee (Table 3.12) discussed the objectives and questions that required answers for each testing phase. These are summarized in Table 3.13.

Figure 3.18. Locations of FWD tests

TT 11 2 14	D 1	• 4		• 4 4
Table 3.12.	Research	project	steering	committee
I dole cilli	Itebeat en	projece	Second	commettee

Name	Title	Organization
Larry Mattusch	County Engineer	Scott County
Tom Stoner	County Engineer	Harrison County
Bob Nady	Consultant	Construction Materials Testing
Michael Heitzman	Bituminous	Iowa DOT
Mike Kvach	Materials, Engineer Executive Vice President	Asphalt Paving Association of Iowa (APAI)
Hosin "David" Lee	Professor	University of Iowa
Charles Jahren	Professor	Iowa State University
Don Chen	Researcher	Iowa State University

Phase	Question
1. Mixture properties test	 Which performance tests will be conducted? What specimen size will be used for mixture performance test?
	 How will volumetric properties be measured?
2. Binder properties test	• What methods will be used for separating binder from aggregate?
	• Which types of binder tests will be conducted?
3. Aggregate property test	• Which aggregate properties tests will be conducted?

 Table 3.13. Questions considered in each testing phase

3.3.2. Laboratory Testing Protocol

The laboratory testing process is illustrated in the flowchart in Figure 3.19. ASTM, AASHTO, or other material testing protocols were followed whenever possible. For discussion purposes, laboratory work can be broken down into seven distinct steps:

- 1. Calibration of test equipment needed to conduct the proposed laboratory test
- 2. Sample preparation for mixture performance test (cutting)
- 3. Bulk specific gravity (G_{mb})
- 4. Conditioning, mixture performance test, photographing broken faces (IDT)
- 5. Theoretical maximum specific gravity (G_{mm})
- 6. Extraction of binder from mixture
- 7. Aggregate property tests
- 8. Binder property tests

3.3.2.1. Test Equipment Calibration

After the laboratory test protocol was selected, the required equipment was calibrated with the assistance of the Iowa DOT bituminous materials engineer and the engineer's staff. The measurement calibration for each piece of required equipment is listed in Table 3.14.

Table 3.14	. The measurements	calibrated :	for each	equipment
-------------------	--------------------	--------------	----------	-----------

Equipment	Measurement(s) calibrated
Scale	Mass
Thermometer	Temperature
Dynamic shear rheometer	Temperature, viscosity
Bending beam rheometer	Temperature, force, deflection, and compliance
Indirect tensile test apparatus	Force
Ignition oven	Binder content

Figure 3.19. Flowchart describing laboratory testing

3.3.2.2. Sample Preparation for Mixture Performance Testing

The core samples of CIR material were uniform in diameter (4 in., matching the core bit inside diameter), but nonuniform in height. CIR samples that were not two inches in height were cut to that height because the mixture performance test required two inch by four inch samples. Pictures were taken of all samples before they were cut. To identify the CIR layer, each core was rolled on a lab table and marked at the place where the contact between layers was observed. The thickness of the HMA surface layer and CIR base layer in each sample was measured for FWD analysis. All samples were transferred to the Iowa DOT concrete lab, and the samples were uniformly cut with a saw. During the cutting procedure, each sample was fully sprayed with water; therefore, samples were dried before measuring bulk specific gravity (G_{mb}).

3.3.2.3. Bulk Specific Gravity

The dried samples were transferred to Iowa State University's asphalt laboratory, where the bulk specific gravity (G_{mb}) was obtained following AASHTO T166-93. Each dried sample was placed on a scale to measure the weight, and then it was immersed in a water bath at $25 \pm 1^{\circ}$ C for 4 ± 1 minute and weighed while suspended in the water bath to obtain the immersed weight. The samples were then taken from the water bath, rolled on a damp towel, and placed on a scale to measure the surface dry weight. The bulk specific gravity was calculated using three measuring parameters (the weight of dry sample, the weight of sample in the water bath, and the weight of surface-dry sample in air). After obtaining the G_{mb} , each sample was dried to remove the moisture absorbed during the test procedure.

3.3.2.4. Conditioning, Mixture Performance Testing, and Visual Inspection

Samples for each road were divided into two groups to investigate possible moisture damage effects. Samples in one group were measured after dry conditioning, and the other group was measured after wet conditioning. To ensure the temperature inside of the samples during the mixture performance test was 40° C, which was intended to represent the average CIR base layer temperature during a summer day in Iowa, the dry-conditioned group was placed in a temperature controller setting at 42° C (two degrees higher than the intended test temperature to anticipate temperature loss during the test). The wet conditioned group was placed in a water bath with the temperature set at 42° C for 24 hours. The number of CIR specimens from each road that survived the cutting process varied due to the differing severity of deterioration from sample to sample. The number of mixture performance test specimens for each group was determined by the number of samples that survived the cutting process (Table 3.15).

The indirect tensile test was selected as the mixture performance test for this project because it measures the tensile stress that the specimen can resist; this is one of the critical responses in a CIR base layer. The indirect tensile test is known to be a good indicator of possible moisture damage that may exist in the samples. Tensile strength and flow values were obtained following ASTM D4123 - 82 and AASHTO T245-94.

Number of specimens obtained through cutting	Wet (40°C, 24 hr)	Dry (40°C, 24 hr)
6	3	3
5	3	2
4	4	0
<4	<4	0

Table 3.15. The number of mixture performance test specimens for each group

Pictures of the broken faces of specimens were taken after the IDT test was performed. The broken faces of specimens visually indicated moisture damage: if the specimens broke through the aggregate, a good bond was indicated and moisture damage was not suspected. If the specimens broke through the bond between the aggregate and the binder, a poor bond was suspected due to moisture damage.

3.3.2.5. Theoretical Maximum Specific Gravity

The CIR specimens and residual CIR material for each road were combined to obtain the required sample size for the theoretical maximum specific gravity test. The combined CIR material from each road was placed in a pan and heated at 135°C (275°F) until the material was soft enough to be broken manually. After the combined CIR material was broken, it was cooled to room temperature. The theoretical maximum specific gravity determination followed ASTM D6857-02 using the CoreLok[™] procedure. ASTM D6857-02 requires that each sample be sealed inside a plastic bag and then immersed in a water bath with a cut in the plastic bag. The mass of the immersed sample is then recorded. For this study, the theoretical maximum specific gravity was calculated using two parameters: the mass of the dry sample and the mass of the immersed sample. After obtaining the theoretical maximum specific gravity, the sample was dried before the next test was conducted.

3.3.2.6. Binder and Aggregate Extraction from Mixture

The binder was burned from the aggregate using the ignition oven method (ASTM D6307-98) and the quantitative extraction method (AASHTO T164 -01). The binder content of the mixture can be obtained through the two test methods previously mentioned; however, there are some differences with regard to the remaining material between the two methods. While the ignition oven method has the advantage of convenience, only the aggregate remains after the test because the binder is completely incinerated. The quantitative extraction method, in contrast, has the advantage of not destroying the binder or aggregate during the test. Samples from each road were broken into two groups to be tested using these two methods. For the quantitative extraction method, more than 2,000 g of mixture is required. Samples from each road were transferred to the Iowa DOT bituminous laboratory, where quantitative extraction was performed. The remaining sample was used to conduct the ignition oven test in order to determine the binder content.

3.3.2.7. Aggregate Property Tests

An aggregate gradation analysis (AASHTO T27-93) was conducted to identify the aggregate properties. Aggregate properties such as coarse aggregate angularity, fine aggregate angularity, and aggregate specific gravity were considered, but these were excluded during the original planning stage of this laboratory investigation. This decision was made because there was a concern that these properties of the aggregate might have changed during prior sampling and testing steps. Rather, an aggregate gradation sample for each road was obtained after the ignition oven burned the asphalt binder from the mixture. After completing gradation analysis (AASHTO T27-93), the aggregate was visually inspected and classified as one of these types: crushed limestone, crushed gravel, or natural gravel.

3.3.2.8. Binder Properties Tests

The binder in CIR material is a combination of the old binder in existing asphalt pavement and the emulsified or foamed binder added during construction. This combination of material types complicates the determination of binder properties. Three test methods were used: an empirical method and two rheological test methods. The penetration test (AASHTO T49-96) was used as the empirical test method. For the rheological test methods, a frequency sweep test using the dynamic shear rheometer (DSR) was undertaken at intermediate temperatures, and a flexural creep stiffness test using the bending beam rheometer (BBR) was undertaken at low temperatures. The frequency sweep test was conducted according to AASHTO T315-02, and the flexural creep stiffness test was conducted according to AASHTO T313-02. A more detailed temperature and frequency test protocol, as seen in Table 3.16, was suggested to reflect Iowa's climatic condition.

	DSR (frequency sweep test)	BBR (flexural creep stiffness test)
Spindle size	8mm (the small one)	N/A
Shear strain	2 %	N/A
Temperature (°C)	20,25,30,35,40,45,50	-12,-18,-24,-30,-36
Frequency (Hz)	0.1,0.3,0.5,0.9,1.6,2.9,	N/A
	5.1, 9.2, 16.6, 30.1	
Time (Sec)	N/A	8,15,30,60,120

Table 3.16. Test protocol for DSR and BBR

Table 3.17 shows the number of cores and the number of replications of each test.

Road	# of cores	G _{mb}	IDT _{wet}	IDT _{dry}	G _{mm}	Gradation	Extraction	Penetration
Boone 198th	8	12	6	6	2	1	1	1
Boone E52	8	8	4	4	2	1	1	1
Bulter T16	6	6	3	3	2	1	1	1
Calhoun IA175	6	3	3	0	2	1	1	1
Carroll N58	6	6	3	3	2	1	1	1
Carroll N of Breda	6	4	4	0	2	1	1	1
Cerro Gordo B43	6	5	3	2	2	1	1	1
Cerro Gordo S. Shore	6	4	4	0	2	1	1	1
Clinton E50	6	6	3	3	2	1	1	1
Clinton Z30	6	6	3	3	2	1	1	1
Delaware US20	6	6	3	3	2	1	1	1
Greene IA144	6	5	3	2	2	1	1	1
Guthrie IA4	6	2	2	0	2	1	1	1
Hardin D35	6	6	3	3	2	1	1	1
Harrison IA44	6	6	3	3	2	1	1	1
Jackson US61	6	4	4	0	2	1	1	1
Montgomery IA48	6	7	4	3	2	1	1	1
Muscatine F70	6	4	0	2	2	1	1	1
Muscatine G28 WB	6	4	4	0	2	1	1	1
Muscatine G28 EB	6	4	4	0	2	1	1	1
Muscatine Y14 NB	6	6	3	3	2	1	1	1
Muscatine Y14 SB	6	5	3	2	2	1	1	1
Story S14 NB	6	6	3	3	2	1	1	1
Story S14 SB	6	2	2	0	2	1	1	1
Tama V18 A	6	6	3	3	2	1	1	1
Tama V18 B	6	8	4	4	2	1	1	1
Winnebago R34 A	6	2	2	0	2	1	1	1
Winnebago R34 B	6	2	2	0	2	1	1	1
Winnebago R60	6	3	3	0	2	1	1	1
Tota	l 178	148	91	55	58	29	29	29

Table 3.17. Number of cores and replications

This chapter has summarized the data collection, materials characterization, and methodologies used in this study. The summary of collected data can be found in Appendix C.

4. EVALUATION OF LONG-TERM PERFORMANCE OF COLD IN-PLACE RECYCLED ROADS

4.1. Data

In this study, data were obtained from the Iowa DOT and county engineers, the pavement distress survey, falling weight deflectometer (FWD) tests, and laboratory tests. The data are described below.

4.1.1. General Data

Project age is defined as the number of years that the project has been a recycled pavement. For county roads, this information was provided by county engineers; for state highways, this information was provided by the Iowa DOT.

Traffic is represented by the AADT of the test section. AADT can be derived from the transportation maps on the Iowa DOT's web site (http://www.iowadotmaps.com/). Twenty-four sample roads were divided into two groups according to traffic volume:

- Low-traffic roads (AADT < 800)
- High-traffic roads (AADT > 800)

Most county roads were low-traffic roads. One state highway, IA 44 in Harrison County, was placed in the lower level because its traffic level of 770 AADT was less than the cutoff value of 800. All other state and U.S. highways, and some county roads with high traffic volumes, were in the high-traffic roads category. Table 4.1 shows how the roads were divided into the two different traffic levels.

The cumulative traffic volume, the product of the age and the traffic volume of a CIR road, was considered as one of the factors in this study. The formula for determining cumulative traffic volume is as follows:

Cumulative traffic volume = pavement age * traffic volume (1)

Road	Traffic (AADT)	Traffic level
Boone 198th	130	Low
Carroll N of Breda	190	Low
Carroll N58	340	Low
Boone E52	390	Low
Winnebago R34	400	Low
Cerro Gordo B43	450	Low
Clinton E50	540	Low
Winnebago R60	550	Low
Tama V18	570	Low
Bulter T16	610	Low
Story S14	740	Low
Harrison IA44	770	Low
Clinton Z30	890	High
Hardin D35	930	High
Muscatine G28	1,100	High
Cerro Gordo SS	1,140	High
Muscatine F70	1,250	High
Muscatine Y14	1,490	High
Calhoun IA175	1,255	High
Greene IA144	1,315	High
Guthrie IA4	1,518	High
Montgomery IA48	1,866	High
Delaware US20	4,900	High
Jackson US61	5,842	High

 Table 4.1. Traffic level of sample roads

4.1.2. Pavement Distress Survey

The pavement distress survey was conducted by the researchers at University of Iowa. PCI and PSI data were collected (CERL 2007; AASHTO 1993).

In this study, PSI was obtained by a subjective measurement of the rideability and appearance of the road, as determined by two raters. Because PSI is subjective in nature, it was not used as an index of pavement performance.

Relative PCI, the difference between the observed PCI and the expected PCI for a road, was used to determine which CIR pavements are performing especially well and which are performing especially poorly. The formula for determining relative PCI is as follows:

Relative
$$PCI = observed PCI - expected PCI$$
 (2)

To determine relative PCI, the observed PCI was obtained from the pavement distress survey described in Chapter 3 of this report, and the expected PCI was calculated based on a statistical relationship (as described below) between the observed PCI and pavement age. Large positive values for relative PCI indicate that the CIR road performed better than expected.

4.1.2.1. Expected PCI

A linear regression analysis was performed to determine the expected PCI. The response variable in this analysis is the observed PCI values of all 24 CIR roads. The independent variable is pavement age. The response and the independent variables were analyzed separately for each traffic level.

Figure 4.1 shows the output of a polynomial regression of observed PCI versus pavement age. The middle line represents the regression line, the lines next to the regression line represent the 95% confidence interval, and the outside lines represent the 95% prediction interval. The expected PCI can be calculated from the regression equation determined by the regression line. For all CIR roads, the regression equation for this analysis is as follows:

Expected PCI =
$$96.97 - 0.0067 * age^{-3}$$
 (3)

Figure 4.1. Observed PCI versus age for all 24 CIR roads

Table 4.2 shows the summary of all PCI values obtained for all sample roads.

			Observed	Expected	Relative
Road	Age	Traffic	PCI	PCI (all)	PCI (all)
Boone198th	17	130	58	64	-6
CarrollNofBreda	1	190	99	97	2
CarrollN58	3	340	100	97	3
BooneE52	14	390	85	79	6
WinnebagoR34	15	400	89	74	15
CerroGordoB43	16	450	59	69	-10
ClintonE50	19	540	59	51	8
WinnebagoR60	15	550	77	74	3
TamaV18	14	570	97	79	18
BulterT16	12	610	96	85	11
StoryS14	1	740	100	97	3
HarrisonIA44	3	770	100	97	3
ClintonZ30	16	890	70	69	1
HardinD35	13	930	78	82	-4
MuscatineG28	14	1100	73	79	-6
CerroGordoSS	15	1140	54	74	-20
MuscatineF70	12	1250	92	85	7
CalhounIA175	12	1255	63	85	-22
GreeneIA144	16	1315	54	69	-15
MuscatineY14	18	1490	64	58	6
GuthrieIA4	11	1518	98	88	10
MontgomeryIA48	3	1866	100	97	3
DelawareUS20	3	4900	91	97	-6
JacksonUS61	3	5842	87	97	-10

Table 4.2. Summary of PCI values

4.1.3. Falling Weight Deflectometer Tests

As described in Section 3.2.4, FWD tests were conducted on 24 sample roads. Extreme deflections caused by the errors listed in Table 3.5 were excluded from the study. For each drop, the resilient moduli of three layers (HMA, CIR, and FND) were calculated. Then, the average resilient modulus was used to represent stiffness of the pavement layers. Table 4.3 summarizes the resilient moduli.

	HMA	CIR	FND
Road	modulus (ksi)	modulus (ksi)	modulus (ksi)
Boone198th	700	1,100	15
CarrollNofBreda	4,300	3,000	11
CarrollN58	4,500	2,800	15
BooneE52	1,300	1,100	12
WinnebagoR34	6,300	4,400	17
CerroGordoB43	11,400	9,900	25
ClintonE50	3,600	2,800	15
WinnebagoR60	13,100	14,500	21
TamaV18	2,000	1,500	19
BulterT16	600	500	10
StoryS14	1,200	700	15
HarrisonIA44	7,300	5,100	19
ClintonZ30	5,300	6,100	23
HardinD35	1,300	900	10
MuscatineG28	1,800	1,700	21
CerroGordoSS	12,600	10,100	25
MuscatineF70	1,500	1,000	25
CalhounIA175	10,500	10,800	21
GreeneIA144	1,000	800	13
MuscatineY14	1,200	1,000	13
GuthrieIA4	1,900	700	20
MontgomeryIA48	3,600	2,100	24
DelawareUS20	6,500	5,200	66
JacksonUS61	18,400	11,900	33

Table 4.3. Summary of the resilient moduli

4.1.4. Laboratory Tests

Various lab tests were conducted and the following data collected, summarized in Table 4.4:

- Bulk specific gravity (G_{mb}) and theoretical maximum specific gravity (G_{mm}) . These gravities of the CIR specimens were used to calculate the air void $(V_a, \%)$ of the CIR mixture (Robert et al. 1996). Therefore, only V_a was considered in the study and analysis. G_{mb} and G_{mm} values can be found in Appendix C.
- Indirect tensile (IDT) strength of the wet and dry CIR specimens (psi). Only the indirect tensile strength of wet CIR specimens (IDT_{wet} strength) was included in the analysis, even though some IDT_{dry} tests were conducted. The reason was that the researchers desired the opportunity to investigate the potential effect of stripping on CIR pavement performance, and IDT_{wet} strength is a good indicator of possible stripping. Therefore, the best specimens, those closer to the standard specimen of four inches in diameter and two inches in height, were used to conduct IDT_{wet} specimen tests. The remaining specimens were used to conduct IDT_{dry} specimen tests. Although this procedure better enabled researchers to investigate possible stripping issues, the side effect was that IDT_{dry}

strengths of some specimens were lower than their IDT_{wet} strengths, possibly because of interior specimen quality. IDT_{wet} and IDT_{dry} strength values can be found in Appendix C.

- In one case (Muscatine F70), an IDT_{wet} strength test was not conducted because the specimen disintegrated during wet conditioning.
- Photographs of the broken faces of wet CIR specimens after indirect tensile tests. Researchers expected that these photos could be used to visually detect possible stripping issues. However, when researchers actually examined the photos after testing, they were unable to determine whether stripping may have been an issue.
- Aggregate gradation of the CIR mixture. The gradation (fine or coarse aggregate) was not considered in the study because it was adjusted by contractors according to ASTM D 6307, and therefore it was nearly the same for all CIR roads. Immediately after milling, the RAP gradations may vary from one road to another. However, the recycling equipment adjusts the final gradation that meets the DOT specification during the crushing and screening process. If constructed properly, the final gradation should be nearly the same for all CIR roads. All 24 CIR roads in this study had graduations that would be considered open-graded by an asphalt mix designer. Aggregate gradations can be found in Appendix D.
- The depth of penetration of the CIR binder (0.1 mm or dmm). The depth was obtained from the penetration test that was undertaken using an empirical test method to measure the consistency of asphalt binder. Some penetration readings were close to zero, possibly because the binder was overheated during the extraction process. The results were not included in the statistical analysis. Data are available in Appendix C.
- Complex shear modulus (G*, Pa). G* was obtained from the DSR test. G* has two portions: the elastic portion and the viscous portion, as shown in Figure 4.2 (from http://training.ce.washington.edu/WSDOT/). In order to resist rutting, the complex shear modulus elastic portion should be large. In order to resist fatigue cracking, the complex shear modulus viscous portion should be small. Phase angles in this study range from 50° to 70°. Since this is a relatively small range, phase angles were not considered in the study. Since PCI was affected by rutting and cracking, G* is considered in the study (and listed in Table 4.4).

Figure 4.2. Complex shear modulus component

- Flexural creep stiffness (S(t)). S(t) was obtained from the BBR test. S(t) represents asphalt binder stiffness after two hours of loading at low temperatures, where the chief failure mechanism is thermal cracking. In this study, a separate BBR sample was tested at -12°C, -18°C, and -24°C, respectively. The m-value indicates the rate of change of the stiffness, S(t), over time. One of the steering committee members recommended that the S(t) and m-value obtained from tests at -18°C be considered in the study. (These are listed in Table 4.4.)
- Type of aggregate. In this study, three types of aggregate were identified in the CIR layer (shown in Table 4.4): limestone, crushed gravel, and gravel. Among the 24 projects, 34% used limestone, 40% used crushed gravel, and the rest (26%) used gravel. The type of aggregate was a variable that was considered in the statistical analysis. In order for this variable to be processed by most of the commonly available flexural statistical software packages (e.g., SAS), the three aggregate types were converted from nominal (qualitative) variables into quantitative variables, as follows:
 - Limestone \rightarrow 1
 - Crushed gravel $\rightarrow 2$
 - o Gravel \rightarrow 3

Road	Age	Traffic	Cumulative		_	
D 100/1	(year)	(AADT)	traffic	PCI	PCI	PCI
Boone198th	17	130	2210	58	64	-6
Carroll, N. of Breda	1	190	190	99	97	2
CarrollN58	3	340	1020	100	97	3
BooneE52	14	390	5460	85	79	6
WinnebagoR34	15	400	6000	89	74	15
CerroGordoB43	16	450	7200	59	69	-10
ClintonE50	19	540	10260	59	51	8
WinnebagoR60	15	550	8250	77	74	3
TamaV18	14	570	7980	97	79	18
BulterT16	12	610	7320	96	85	11
StoryS14	1	740	740	100	97	3
HarrisonIA44	3	770	2310	100	97	3
ClintonZ30	16	890	14240	70	69	1
HardinD35	13	930	12090	78	82	-4
MuscatineG28	14	1100	15400	73	79	-6
CerroGordoSS	15	1140	17100	54	74	-20
MuscatineF70	12	1250	15000	92	85	7
CalhounIA175	12	1255	13805	63	85	-22
GreeneIA144	16	1315	19725	54	69	-15
MuscatineY14	18	1490	26820	64	58	6
GuthrieIA4	11	1518	15180	98	88	10
MontgomeryIA48	3	1866	5598	100	97	3
DelawareUS20	3	4900	14700	91	97	-6
JacksonUS61	3	5842	17526	87	97	-10

	HMA	CIR	FND						
	modulus	-	modulus		IDT _{wet}	G*	S(t)	m-	
Road	(ksi)	(ksi)	(ksi)	V_a (%)	(psi)	(kpa)	(Mpa)	value	Aggr.
Boone198th	700	1,100	15	6.5	19.4	200	204	0.29	3
Carroll, N. of Breda	4,300	3,000	11	11.3	12.3	1,700	681	0.18	3
CarrollN58	4,500	2,800	15	9.5	18.5	200	229	0.32	2
BooneE52	1,300	1,100	12	9.7	25.9	2,100	410	0.2	3
WinnebagoR34	6,300	4,400	17	13.3	23.7	2,000	745	0.18	2
CerroGordoB43	11,400	9,900	25	11.5	17.6	1,000	603	0.2	1
ClintonE50	3,600	2,800	15	12.7	28.8	1,900	678	0.18	1
WinnebagoR60	13,100	14,500	21	13.4	19.7	4,100	962	0.16	2
TamaV18	2,000	1,500	19	9.2	24	300	348	0.27	2
BulterT16	600	500	10	9.3	19.9	800	442	0.22	2
StoryS14	1,200	700	15	8.5	15.4	500	454	0.22	2
HarrisonIA44	7,300	5,100	19	4.5	28.7	300	285	0.27	2
ClintonZ30	5,300	6,100	23	11.1	43.47	1,300	655	0.21	1
HardinD35	1,300	900	10	8.3	43.47	800	494	0.21	3
MuscatineG28	1,800	1,700	21	11.1	16.5	1,200	532	0.21	1
CerroGordoSS	12,600	10,100	25	10.8	28	300	391	0.23	1
MuscatineF70	1,500	1,000	25	13.2		200	404	0.24	3
CalhounIA175	10,500	10,800	21	9.5	17.1	800	429	0.21	2
GreeneIA144	1,000	800	13	6.6	17.7	200	436	0.24	2
MuscatineY14	1,200	1,000	13	14.3	26.4	1,300	533	0.21	1
GuthrieIA4	1,900	700	20	11.8	24.2	1,500	651	0.18	3
MontgomeryIA48	3,600	2,100	24	5.8	25.6	200	319	0.25	1
DelawareUS20	6,500	5,200	66	7.6	16.3	200	318	0.27	2
JacksonUS61	18,400	11,900	33	9.8	9.6	400	583	0.2	1

 Table 4.4. Summary of data (continued)

4.1.5. Summary of Data

The data that were initially considered in the study are shown in Table 4.4. Summary statistics for these data are shown in Table 4.5.

	Number of roads	V_{a} (%)	IDT _{wet} (psi)	G* (1,000 KPa)
Overall	24	4.5 ~ 14.3	9.6 ~ 43.5	0.2 ~ 4.1
		(10/2.6)	(22.7/8.4)	(1.0/0.9)
Low-traffic roads	12	4.5 ~ 13.4	12.3 ~ 28.8	0.2 ~ 4.1
(AADT < 800)		(10/2.7)	(21.2/5.1)	(1.2/1.2)
High-traffic roads	12	5.8 ~ 14.3	9.6 ~ 43.4	0.2 ~ 1.5
(AADT > 800)		(10/2.6)	(24.4/10.9)	(0.7/0.5)
Roads with poor	9	6.5 ~ 11.5	9.6 ~ 43.5	0.2 ~ 1.2
performance		(9.1/1.9)	(20.6/9.8)	(0.6/0.4)
(Relative PCI < 0)				
Roads with better	15	4.5 ~ 14.3	12.2 ~ 43.5	0.2 ~ 4.1
performance		(10.5/2.8)	(24.1/7.4)	(1.2/1.1)
(Relative PCI > 0)				
Low-traffic / poor-	2	6.5 ~ 11.5	17.6 ~ 19.4	0.2 ~ 1.0
performance roads		(9.0/3.5)	(18.8/1.2)	(0.6/0.6)
Low-traffic / better	10	4.5 ~ 13.4	12.2 ~ 28.8	0.2 ~ 4.1
performance roads		(10.2/2.7)	(21.7/5.5)	(1.4/1.2)
High-traffic / poor-	7	6.6 ~ 11.1	9.6 ~ 43.5	0.2 ~ 1.2
performance roads		(9.1/1.7)	(21.2/11.2)	(0.6/0.4)
High-traffic / better	5	5.8 ~ 14.3	24.2 ~ 43.5	0.2 ~ 1.5
performance roads		(11.2/3.3)	(29.9/9.1)	(0.9/0.7)

 Table 4.5. Summary statistics for all roads (range and mean/standard deviation)

4.2. Statistical Analysis and Results

Statistical analyses were performed to evaluate CIR pavement performance, represented by relative PCI. The independent variables that were initially considered in the analyses include the following:

- 1. Cumulative traffic
- 2. Resilient modulus of the HMA layer (psi)
- 3. Resilient modulus of the CIR layer (psi)
- 4. Resilient modulus of the FND layer (psi)
- 5. Indirect tensile strength of the mixture (wet samples) (psi)
- 6. Air voids (V_a , %)
- 7. Complex shear modulus (G*, KPa)
- 8. Flexural creep stiffness (S(t), MPa),
- 9. m-value
- 10. Types of aggregate

The correlation matrix was developed and variance inflation factors (VIF) were calculated in order to reduce or eliminate multicollinearity among variables. The 24 CIR roads were first considered as one group, and then the 24 roads were divided into two groups. One group consisted of roads with higher traffic volumes (AADT>800); another group consisted of roads

with lower traffic volumes (AADT<800). Within each group, a descriptive method and a mathematical method were applied to develop a first-order model (in which each of the independent variables appears, but there are no cross-product terms or terms in powers of the independent variables). Then, a more complicated model with higher degree terms was developed for all 24 CIR roads. The first-order models were developed in this study because their results are easy to interpret and therefore may be preferred by practitioners. This section presents the results of these analyses.

4.2.1. Multicollinearity in Multiple Regressions

Multicollinearity exists when two independent variables are highly correlated and both convey essentially the same information. In this case, neither may contribute significantly after the other one is included in the model. Multicollinearity presents challenges in attempting to understand how the different variables impact the response. For example, an important variable might be excluded from the final model because of its smaller significance. In order to remove multicollinearity, a correlation matrix was developed. The matrix consists of correlation coefficients that indicate the strength of the linear relationships between each pair of variables. Among pairs of independent variables with higher correlation coefficients, if one of the variables does not seem logically essential to the model, removing it may reduce or eliminate multicollinearity. Another, more sophisticated way of diagnosing multicollinearity is to examine the VIF. The VIF value measures the amount that the variance (square of the standard error) of a coefficient is increased because of multicollinearity. If the VIF is 1, there is no multicollinearity. If it is very large, such as 10 or more, multicollinearity is a serious concern. Tables 4.6 through 4.8 show the correlation matrix of all 24 CIR roads, low-traffic roads, and high-traffic roads, respectively. Table 4.9 shows the VIF values of the variables initially considered in this study.

Correlations that are higher than 0.80 are highlighted in the correlation matrices. Variables with high VIF values (VIF > 7) are highlighted (Table 4.9). The following variables were removed from the study because they had a larger correlation with other variables and a high VIF value. In addition, they were relatively irrelevant to the response compared to other variables.

- The HMA modulus was removed from the study because it is highly correlated with the CIR modulus. The HMA modulus was removed instead of the CIR modulus because this study was undertaken to investigate the material properties of the CIR layer, not the HMA layer.
- The m-value was removed from this study because of its high correlation with S(t). In addition, the m-value is derived from S(t): it is the rate of change in S(t) over the loading time. Therefore, the decision was made to retain the original variable rather than the derived variable.

	Cum.	Rel.	HMA	CIR	FND						
	traffic	PCI	mod.	mod.	mod.	V_a	IDT _{wet}	G	S	m-val.	Agg.
Cum.	1.00	-0.31	0.14	0.14	0.25	0.31	0.15	-0.03	0.18	-0.24	-0.42
traffic											
Relative	-0.31	1.00	-0.44	-0.45	-0.29	0.30	0.25	0.36	0.22	-0.11	0.13
PCI											
HMA	0.14	-0.44	1.00	0.95	0.43	0.18	-0.26	0.14	0.31	-0.23	-0.40
modulus											
CIR	0.14	-0.45	0.95	1.00	0.39	0.25	-0.19	0.29	0.39	-0.28	-0.37
modulus											
FND	0.25	-0.29	0.43	0.39	1.00	-0.14	-0.22	-0.21	-0.12	0.19	-0.26
modulus											
$\mathbf{V}_{\mathbf{a}}$	0.31	0.30	0.18	0.25	-0.14	1.00	0.02	0.70	0.76	-0.68	-0.24
IDT _{wet}	0.15	0.25	-0.26	-0.19	-0.22	0.02	1.00	0.08	0.04	-0.05	-0.02
G	-0.03	0.36	0.14	0.29	-0.21	0.70	0.08	1.00	0.84	-0.75	0.11
S	0.18	0.22	0.31	0.39	-0.12	0.76	0.04	0.84	1.00	-0.89	-0.12
m-value	-0.24	-0.11	-0.23	-0.28	0.19	-0.68	-0.05	-0.75	-0.89	1.00	0.05
Agg.	-0.42	0.13	-0.40	-0.37	-0.26	-0.24	-0.02	0.11	-0.12	0.05	1.00

Table 4.6. Correlation matrix for all 24 CIR roads

Table 4.7. Correlation matrix for low-traffic roads

	Cum.	Rel.	HMA	CIR	FND						
	traffic	PCI	mod.	mod.	mod.	V_a	IDT _{wet}	G	S	m-val.	Agg.
Cum.	1.00	0.49	0.26	0.33	0.32	0.53	0.51	0.46	0.47	-0.45	-0.57
Traffic											
Relative	0.49	1.00	-0.32	-0.31	-0.25	0.26	0.51	0.14	0.13	-0.14	-0.07
PCI											
HMA	0.26	-0.32	1.00	0.97	0.77	0.42	-0.03	0.54	0.61	-0.37	-0.44
Modulus											
CIR	0.33	-0.31	0.97	1.00	0.74	0.45	-0.07	0.64	0.66	-0.42	-0.37
Modulus											
FND	0.32	-0.25	0.77	0.74	1.00	0.13	0.12	0.11	0.24	-0.03	-0.57
Modulus											
Va	0.53	0.26	0.42	0.45	0.13	1.00	-0.13	0.74	0.85	-0.74	-0.34
IDTwet	0.51	0.51	-0.03	-0.07	0.12	-0.13	1.00	0.05	-0.12	0.05	-0.26
G*	0.46	0.14	0.54	0.64	0.11	0.74	0.05	1.00	0.88	-0.81	-0.02
S	0.47	0.13	0.61	0.66	0.24	0.85	-0.12	0.88	1.00	-0.91	-0.29
m-value	-0.45	-0.14	-0.37	-0.42	-0.03	-0.74	0.05	-0.81	-0.91	1.00	0.17
Agg.	-0.57	-0.07	-0.44	-0.37	-0.57	-0.34	-0.26	-0.02	-0.29	0.17	1.00

	Cum.	Rel.	HMA	CIR	FND						
	traffic	PCI	mod.	mod.	mod.	V_a	IDT _{wet}	G	S	m-val.	Agg.
Cum.	1.00	0.04	-0.02	-0.03	-0.17	0.65	-0.20	0.27	0.32	-0.24	-0.16
Traffic											
Relative	0.04	1.00	-0.52	-0.61	-0.10	0.39	0.40	0.58	0.43	-0.25	-0.01
PCI											
HMA	-0.02	-0.52	1.00	0.95	0.38	0.00	-0.39	-0.39	-0.05	-0.05	-0.35
modulus											
CIR	-0.03	-0.61	0.95	1.00	0.35	0.04	-0.29	-0.32	-0.07	-0.03	-0.35
modulus											
FND	-0.17	-0.10	0.38	0.35	1.00	-0.25	-0.40	-0.42	-0.40	0.57	-0.09
modulus											
$\mathbf{V}_{\mathbf{a}}$	0.65	0.39	0.00	0.04	-0.25	1.00	0.13	0.78	0.65	-0.66	-0.20
IDT _{wet}	-0.20	0.40	-0.39	-0.29	-0.40	0.13	1.00	0.35	0.25	-0.15	0.18
G*	0.27	0.58	-0.39	-0.32	-0.42	0.78	0.35	1.00	0.80	-0.77	0.14
S	0.32	0.43	-0.05	-0.07	-0.40	0.65	0.25	0.80	1.00	-0.87	0.08
m-value	-0.24	-0.25	-0.05	-0.03	0.57	-0.66	-0.15	-0.77	-0.87	1.00	-0.20
Agg.	-0.16	-0.01	-0.35	-0.35	-0.09	-0.20	0.18	0.14	0.08	-0.20	1.00

Table 4.8. Correlation matrix for high-traffic roads

 Table 4.9. VIF values of independent variables

Variables	VIF
Intercept	0.00
Traffic (AADT)	4.33
Cumulative traffic	4.24
HMA modulus (ksi)	19.18
CIR modulus (ksi)	19.36
FND modulus (ksi)	1.84
$V_{a}(\%)$	3.09
IDT _{wet} (psi)	1.33
G* (KPa)	7.34
S (t) (MPa)	9.31
m-value	7.21
Aggregate	1.41

4.2.2. Model Selection

The goal of the statistical analyses was to find an appropriate model for this study to explain the pavement performance. Two methods, a descriptive method and a mathematical method, were used to perform the model selection.

Descriptive Method. Scatter plots of individual variables versus relative PCI under different traffic levels were developed (Figures 4.3 through 4.5). The linear regression line of each variable was projected onto the scatter plot. A variable with a steeper regression line contributes more significantly to pavement performance than one with a flatter regression line. Therefore, the

variables that have a relatively steeply sloping regression line are the candidate variables that might be included in the final model. The following individual variables were deemed to be candidate variables:

- For all CIR roads: IDT_{wet}, cumulative traffic, V_a
- For low-traffic roads (AADT<800): IDT_{wet}, cumulative traffic, CIR modulus
- For high-traffic roads (AADT<800): IDT_{wet}, V_a, CIR modulus

Figure 4.3. Scatter plot of all 24 CIR roads

Figure 4.4. Scatter plot of low-traffic roads (AADT<800)

Figure 4.5. Scatter plot of high-traffic roads (AADT>800)

Because large variances existed in some variables (for example, IDT_{wet} and V_a), and linear regression lines were not sufficient to explain these variations, the determination of which variables should be included in the final model was made by using a mathematical method.

Mathematical Method. To conduct the model selection, four selection methods in the SAS software package (Version 9.00 for Windows, SAS Institute, Inc.) were used:

- 1. FORWARD selection. This method starts with no variables in the model and adds variables. The significance level for entry into the model is 0.05.
- 2. BACKWARD elimination. This method starts with all variables in the model and deletes variables. The significance level for staying in the model is 0.1.
- 3. STEPWISE regression. This is similar to the FORWARD method, except that variables already in the model do not necessarily stay there. The significance level for entry into the model is 0.15, and the significance level for staying in the model is 0.15.
- 4. RSQUARE. This method finds a specified number of models with the highest R^2 in a range of model sizes (number of variables in the model). A model size of four was used.

First-order Models. SAS outputs (Appendix G) of these methods indicated that the following variables should be used to obtain an appropriate model:

- For all CIR roads: Cumulative traffic, CIR modulus, and V_a
- For low-traffic roads (AADT < 800): IDT_{wet}, CIR modulus, and V_a
- For high-traffic roads (AADT > 800): Cumulative traffic, CIR modulus, and V_a

Higher-order Model. Residual analyses were conducted to find the independent variables that require higher order terms (Figure 4.6). Residuals are differences between observed PCI and

expected PCI obtained from the regression model. Plotting the residuals from a first-order model (straight line linear terms only) against each independent variable often reveals further structure in the data that can be used to improve the regression model. For example, a noticeable curve in a linear regression of the residual plot reflects the possibility that a higher order term would improve the fitness of the model. A scatter plot of the response variable against an independent variable can reveal the curve, if it exists. However, the curved relationship is more evident in a residual plot.

The statistical software package, S-PLUS (Insightful Corporation, http://www.insightful.com/ products/splus/default.asp), was used to conduct the residual analyses. The plots (residuals of relative PCI versus independent variables) indicated that a noticeable curve existed in the residual plot of relative PCI versus FND modulus, V_a, IDT_{wet}, and G*. Therefore, these three independent variables require higher order terms. TableCurve 2D (SYSTAT Software, Inc., http://www.systat.com/products/TableCurve2D/), another set of statistical software, was used to find the appropriate higher order terms. The results are shown as follows:

- FND modulus \rightarrow (FND modulus) 2
- $V_a \rightarrow (V_a) 3$
- $IDT_{wet} \rightarrow (IDT_{wet}) 2$
- $G^* \rightarrow (G^*) 2$

SAS outputs of model selection methods (Appendix G) indicated that the following variables should be used to obtain an appropriate model:

For all CIR roads: Cumulative traffic, CIR modulus, and V_a

A dummy variable, "Volume," was included in the regression so that a comparison between low-traffic roads and high-traffic roads may be made. The variable was defined as follows:

- If Traffic < 800, then Volume = 0
- If Traffic > 800, then Volume = 1

Figure 4.6. Residuals versus independent variables

4.2.3. Multiple Regression and Results

To appropriately apply the multiple regression technique and interpret its results, the following two concepts should be understood:

- The R² value of a model indicates how well the model fits the data. In other words, it describes how much variation in the response variable is being explained by the independent variables. R² can take on any value between 0 and 1, with values closer to 1 indicating that the model explains a greater proportion of variance. For example, an R² value of 0.8234 means that the model explains 82.34% of the total variation in the data.
- The p-value of an independent variable indicates the probability that the relationship between an independent variable and the response variable obtained in a statistical analysis is due to chance rather than due to a true relationship between the two. For example, a p-value of 0.01 means there is a 1 in 100 chance the relationship occurred by chance. Therefore, if the p-value is small, an analyst would be confident to conclude that the relationship obtained is "real." A p-value of 0.05 or less is the commonly used standard to determine that a relationship between variables is significant. Moreover, the p-value of a model is the probability of rejecting the hypothesis that all variables are 0 except for the intercept if the hypothesis is true. A small p-value (less than 0.05) indicates that the effects in the model have significant impact on the response variable.

4.2.3.1. Results from First-order Models

The results from multiple regression analyses are shown in Tables 4.10 through 4.12. The regression models for each category are listed after the tables.

Term	Estimate	P-value	Significance
Intercept	-25.06	0.051	No
IDT _{wet}	0.87	0.040	Yes
\mathbf{V}_{a}	1.73	0.051	No
CIR modulus	-1.02	0.066	No

Table 4.10. Regression results for low-traffic roads

Within the regression analysis for low-traffic roads, F = 4.01, p-value = 0.052 (not significant at 0.05 level), $R^2 = 0.60$, and $R^2_{adj} = 0.45$. The regression model for low-traffic roads is as follows:

Relative $PCI = -25.06 + 0.87*IDT_{wet} + 1.73*V_a - 1.02*CIR modulus$

Table 4.11. Regression	results for	r high-traf	fic roads
------------------------	-------------	-------------	-----------

Term	Estimate	P-value	Significance
Intercept	-12.23	0.25	No
CIR modulus	-1.59	0.0017	Yes
\mathbf{V}_{a}	2.85	0.032	Yes
Cumulative Traffic	-0.00085	0.18	No

Within the regression analysis for high-traffic roads, F = 5.59, p-value = 0.023 (significant at 0.05 level), R^2 =0.68, and R^2_{adj} = 0.56. The regression model for high-traffic roads is as follows:

Relative PCI = -12.23 - 1.59* CIR modulus + 1.73* V_a - 0.00085*Cumulative Traffic

Table 4.12. Regression results for all 24 CIR roads

Term	Estimate	P-value	Significance
Intercept	-10.37	0.13	No
Va	2.45	0.0021	Yes
CIR modulus	-1.38	0.0027	Yes
Cumulative Traffic	-0.00026	0.015	Yes

Within the regression analysis for all 24 CIR roads, F = 8.12, p-value = 0.001 (significant at 0.05 level), $R^2=0.55$, and $R^2_{adj} = 0.48$. The regression model for all 24 CIR roads is as follows:

Relative $PCI = -10.37 + 2.45 \text{ V}_a - 1.38 \text{ CIR}$ modulus - 0.00026*Cumulative Traffic

4.2.3.2. Results from Higher-order Model

Regression results for the higher order model are shown in Table 4.13.

Term	Estimate	P-value	Significance
Intercept	1.39	0.73	No
CIR modulus	-1.31	0.0016	Yes
V_a^3	0.0065	0.012	Yes
Cumulative Traffic	-0.00035	0.43	No
Volume (0)	2.53	0.37	No

 Table 4.13. Regression results from the higher order model

For the higher order model, F = 7.39, p-value = 0.0009 (significant at 0.05 level), R^2 =0.61, and $R^2_{adj} = 0.53$. The regression model for all 24 CIR roads is as follows:

 $\label{eq:Relative PCI} \textit{Relative PCI} = 1.39 + 0.0065 * \text{V}_{a}^{\ 3} - 1.31 * \textit{CIR modulus} - 0.00035 * \textit{Cumulative Traffic} + 2.53 * \textit{Volume (0)}$

The higher order model of all 24 CIR roads (with the dummy variable "Volume") can be used to compare the effect of traffic levels on relative PCI. Two other higher order models (without the dummy variable "Volume") were developed for low- and high-traffic roads, respectively, which can be used to conduct a comparison with the corresponding first-order models for the two traffic levels of roads. The results of the analysis using the two higher order models (without the dummy variable "Volume") can be found in Appendix G.

4.2.3.3. Overall Fitness of the Models

First-order Models. The results (Tables 4.10 through 4.12) show that the p-values of the model are 0.052, 0.023, and 0.001, respectively, for low-traffic roads, high-traffic roads, and all 24 CIR roads. This indicates that the effects of the selected variables in the "high traffic" model and the "all CIR roads" model had significant impact on the relative PCI at 0.05 level. The effects of the selected variables in the "low traffic" model were not significant; this suggests that other variables such as environmental factors might prominently affect pavement performance. R² values are 0.60, 0.68, and 0.55, and R² _{adj} values are 0.45, 0.56, and 0.48, respectively.

For low-traffic roads, CIR modulus and V_a were not significant at 0.05 level, IDT_{wet} was significant. For high-traffic roads, CIR modulus and V_a were significant at 0.05 level, but cumulative traffic was not significant. For all 24 CIR roads, CIR modulus, V_a , and cumulative traffic were all significant at 0.05 level.

Higher-order Model. The results (Table 4.13) show that the p-value of the model is 0.009. This indicates that the effects of the selected variables in the model had significant impact on the relative PCI at 0.05 level. The R^2 value is 0.61.

CIR modulus and V_a^3 were significant at 0.05 level, but cumulative traffic was not significant. When other variables remain the same, "Volume" changes from 0 to 1 (traffic volume changes from < 800 AADT to > 800 AADT) and reduces relative PCI by 2.53.

4.2.3.4. Cumulative Traffic

Repeated traffic loads are usually considered to be one of the major causes of rutting and fatigue/reflection cracking, the distresses that often impair pavement performance. The results show that cumulative traffic, even though not significant, negatively impacted pavement performance for high-traffic CIR roads; it also significantly impaired pavement performance for all CIR roads.

4.2.3.5. Modulus of the CIR Layer

In a typical flexible pavement structure, material layers are usually arranged in order of descending load bearing capacity, with the highest load bearing capacity material on the top and the lowest load bearing capacity material on the bottom. Thus, the surface course (typically an HMA layer) is the stiffest (as measured by resilient modulus). The underlying layers are less stiff.

Serving as the base of the HMA surface course, the CIR layer should not only be stiff enough to provide adequate pavement strength, but also be flexible enough to allow the total pavement structure to deflect under repeated traffic loading. This study showed that the stiffness the CIR layer significantly affects performance of all 24 CIR roads and high-traffic roads, and that CIR roads with more elastic CIR layers performed better. This finding confirmed Abd El Halim's (1985; 1986) studies, in that serving as a stress relieving layer, the relatively less stiff CIR layer will reduce cracks on the HMA layer.

4.2.3.6. Indirect Tensile Strength of Wet Samples (IDT_{wet})

 IDT_{wet} is often used to evaluate water susceptibility of mixtures. A high number typically indicates that a good performance is expected. The results showed that IDT_{wet} significantly and positively affected pavement performance of low-traffic roads.

4.2.3.7. Air Voids (V_a)

Air voids are voids between the aggregate particles in the compacted CIR layer that are filled with air. In this study, the results showed that V_a was significant and positively impacted pavement performance at 0.05 level for high-traffic roads and overall performance, and it was not significant at 0.5 level for low-traffic roads.

4.2.4. Rolled-down Cracking and Rutting

A rolled-down crack is a high-severity crack, with edges that are rolled down by traffic and possible existence of water in the base. Rolled-down cracking and rutting are major factors that affect the smoothness and safety of CIR pavements. Therefore, researchers attempted to investigate which CIR material properties are associated with rolled-down cracking and rutting.

The researchers used their own judgment to decide whether or not the cracks were rolled down on 17 of the sample roads that were recycled more than 10 years ago. Based on the distress survey data (Chapter 3 of this report), the existence of rutting was determined. Table 4.14 shows the CIR material properties and the status of rolled-down cracking and rutting on 17 CIR roads.

Nominal logistic regression was conducted because the response variables are nominal, as shown below:

- Rolled-down cracking | yes = 1; Rolled-down cracking | no = 0,
- Rutting | yes = 1; Rutting | no = 0.

The results of regression are shown in Tables 4.15 and 4.16.

	Rolled-down						
Road	crack	Rutting	Va	IDTwet	G*	Aggregate	Traffic
Boone198	No	Yes	6.54	19.38	0.2	Gravel	130
BooneE52	Yes	No	9.73	25.87	2.1	Gravel	390
BulterT16	No	No	9.32	19.88	0.8	Crushed gravel	610
CGB43	Yes	Yes	11.52	17.63	1.0	Limestone	450
CGSS	Yes	No	10.81	28.02	0.3	Limestone	1,140
CalhounIA175	Yes	Yes	9.53	17.06	0.8	Crushed gravel	1,255
ClintonE50	Yes	Yes	12.74	28.82	1.9	Limestone	540
ClintonZ30	Yes	No	11.11	43.47	1.3	Limestone	890
GreeneIA144	Yes	Yes	6.57	17.66	0.2	Crushed gravel	1,315
GuthrieIA4	Yes	No	11.78	24.16	1.5	Gravel	1,518
HardinD35	Yes	Yes	8.26	43.47	0.8	Gravel	930
MuscatineF70	No	Yes	13.20		0.2	Gravel	1,250
MuscatineG28	Yes	Yes	11.07	16.5	1.2	Limestone	1,100
MuscatineY14	Yes	Yes	14.30	26.4	1.3	Limestone	1,490
TamaV18	No	No	9.18	24.03	0.3	Crushed gravel	570
WinnebagoR34	Yes	Yes	13.29	23.72	2.0	Crushed gravel	400
WinnebagoR60	No	Yes	13.42	19.74	4.1	Crushed gravel	550

Table 4.14. Rolled-down cracking and rutting status of 17 CIR roads

Table 4.15. Regression results for rolled-down cracking

	Estimat e	P-value	Significance
Intercept	-0.38	0.58	No
V_a	0.096	0.17	No
G^*	-0.18	0.27	No
IDT _{wet}	0.014	0.34	No

For the regression in Table 4.15, F = 1.14, p-value = 0.37 (not significant at 0.05 level), $R^2 = 0.22$, and $R^2_{adj} = 0.03$.

Table 4.16. Regression results for rutting

	Estimat		Significanc
	e	P-value	e
Intercept	0.92	0.27	No
IDT _{wet}	-0.016	0.34	No
G*	0.073	0.69	No
V _a	0.0015	0.98	No

For the regression in Table 4.16, F = 0.43, p-value = 0.73 (not significant at 0.05 level), $R^2 = 0.10$, and $R^2_{adj} = -0.13$.
In this study, for technology transfer purposes, a new term, "Importance," was defined as follows:

Importance = 1 - p-value

Figures 4.7 and 4.8 indicate the effects of material properties on rolled-down cracking and rutting, ordered by importance.

Figure 4.7. Importance of variables (rolled-down cracking)

Figure 4.8. Importance of variables (rutting)

Since all the variables in the nominal logistic regression were not significant, it seems that factors other than what was considered in the study should be included in order to explain rolled-down cracking and rutting.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

A comprehensive investigation of CIR pavement performance was conducted, including distress surveys, field and laboratory testing, and statistical analyses. Twenty-four CIR roads with various traffic levels and support conditions that were constructed from 1986 to 2004 at various locations throughout the state of Iowa were studied. It was found that among the variables in this study, the modulus of the CIR layer and the air voids (V_a) of the CIR asphalt binder were the most important factors affecting CIR pavement performance for high-traffic roads in the first-order model and for all 24 CIR roads in the higher order model. The IDT_{wet} value significantly affected pavement performance in the first-order model for low-traffic roads. The impact of each of the factors was studied through statistical analyses.

The following conclusions were drawn from this research:

- The results of this study support the theory that the CIR layer acts as a stress relieving layer. Therefore, within the range of the data analyzed, a smaller CIR modulus value (more viscoelasticity) and a higher value of V_a for the CIR layer (more porosity) indicates that better performance is expected.
- Within the range of the data analyzed, a higher value of IDT_{wet} significantly and positively affected pavement performance of low-traffic roads in the first-order model.
- Variables other than those selected, such as environmental factors, may affect performance of low-traffic CIR roads.
- A higher amount of cumulative traffic is associated with lower relative pavement performance in the models for high-traffic roads and all 24 CIR roads.
- Material properties (IDT_{wet}, V_a, and G*) could not explain the occurrence of rolled-down cracking and rutting, according to the statistical analysis.

5.2. Recommendations

The following recommendations are made based on this research:

- A larger sample size (about 50) is recommended for a future study. More cores and FWD tests on each road are also necessary to reduce the variance in the response variable, relative PCI.
- This study investigated overall CIR pavement performance, which is affected by both the HMA and/or the CIR layer. A study with a larger sample size will contain sufficient information to distinguish the effects of these two layers. Therefore, a regression analysis between the independent variables and the part of the response variable (relative PCI) affected solely by the CIR layer might provide more conclusive findings. However, it would certainly be challenging to isolate the part of the response variable that is related to the CIR layer.

- Phase angles need to be considered in future studies to account for the elasticity and viscosity of asphalt binders.
- In the current study, the variables that were considered did not explain the causes of rolled-down cracking and rutting. Further research is needed on this issue.

REFERENCES

- AASHTO. 1993. AASHTO guide for the design of pavement structures. Washington, DC: American Association of State Highway Transportation Officials.
- Abd El Halim, A.O. 1985. Influence of Relative Rigidity on the Problem of Reflection Cracking. *Transportation Research Record*, 1007, 53–58.
- Abd El Halim, A.O. 1986. Experimental and Field Investigation of the Influence of Relative Rigidity on the Problem of Reflection Cracking. *Transportation Research Record*, 1060, 88–98.
- Allen, D.D. 1988. Cold In-Place Recycling: Design Guidelines and Solutions. Paper presented at the 1988 Regional Recycling Seminar, Portland, OR.
- Allen, D.D., R. Nelson, D. Thirston, J. Wilson, and G. Boyle. 1986. Cold Recycling, Oregon 1985. Draft of technical report for Oregon State Highway Division.
- Anderson, D.I., D.E. Peterson, M.L. Wiley, and W.B. Betenson. 1978. Evaluation of Selected Softening Agents Used in Flexible Pavement Recycling. Report No. FHWA-TS-79204. Washington, DC: Federal Highway Administration.
- Anderson, R.M., W.D. Christensen, R. Bonaquist. 2003. Estimating the Rutting Potential of Asphalt Mixtures Using Superpave Gyratory Compaction Properties and Indirect Tensile Strength. Association of Asphalt Paving Technologists, Proceedings of the Technical Sessions, 72.
- ARRA. 1988. *Cold In-Place Recycling Across America*. Annapolis, MD: Asphalt Recycling and Reclaiming Association (1988).
- ARRA. 1992a. *Guidelines for Cold In-Place Recycling*. Annapolis, MD: Asphalt Recycling and Reclaiming Association.
- ARRA. 1992b. An Overview of Recycling and Reclamation Methods for Asphalt Pavement Rehabilitation. Annapolis, MD: Asphalt Recycling and Reclaiming Association.
- Asphalt Institute. 1983. Asphalt Cold-Mix Recycling. Manual Series No. 21 (MS-21). Lexington, KY: The Asphalt Institute.
- Atkins, H.N. 1997. *Highway Materials, Soils, and Concretes*. Upper Saddle River, NJ: Prentice-Hall, Inc..
- Ayers, M.E. 1990. Rapid Shear Strength Evaluation of In Situ Granular Materials Utilizing the Dynamic Cone Penetrometer. Doctoral dissertation, University of Illinois.
- Beckett, S. 1977. *Recycling Asphalt Pavements*. Demonstration Project No. 39. Interim No. 1. Washington DC: Federal Highway Administration, Region 15.
- Bertaud, M. and J.P. Lavaud. 1993. Recyclage en centrale ou retraitement en place à froid? La regénération des enrobés dans le sud-ouest de la France. *Bulletin de liaison des laboratoires des ponts et chaussées*, 183.
- Bohn, A., P. Ullidtz, R. Stubstad, and A. Sorensen. 1972. Danish experiments with the French falling weight Deflectometer. *Proceedings, Third International Conference on Structural Design of Asphalt Pavements, Ann Arbor, MI*, 1119–1128.
- Bonitzer, J. and P. Leger. 1967. CPC studies on pavement design. *Proceedings, Second International Conference on Structural Design of Asphalt Pavements, Ann Arbor, MI*, 781–788.

- Bredenhann, S.J. and M.F.C. van de Ven. 2004. Application of Artificial Neural Networks in the Back-calculation of Flexible Pavement Layer Moduli from Deflection Measurements. Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA '04), Sun City, South Africa.
- Brown, D.J. 1977. *Interim Report on Hot Recycling*. Washington, DC: Federal Highway Administration, Region 15, Demonstration Projects Division.
- Brown, D.C. 1989. What Coldmix Tests Revealed in Kansas. *Highway and Heavy Construction* (January 1989).
- Brownie, R.B. and M.C. Hironaka. 1978. *Recycling of Asphalt Concrete Airfield Pavements*. Port Hueneme, CA: Naval Civil Engineering Laboratory.
- Burnham, T.R. and D. Johnson. 1993. *In Situ Foundation Characterization Using the Dynamic Cone Penetrometer*. Final Report. Maplewood, MN: Minnesota Department of Transportation.
- Ceylan, H. and A. Guclu. 2004. Use of Artificial Neural Networks for the Analysis and Design of Concrete Pavement Systems Serving the A380-800 Aircraft. Paper presented at the Artificial Neural Networks in Engineering (ANNIE) Conference, St. Louis, MO.
- Construction Engineering Research Laboratory (CERL). 2007. About MicroPAVER. U.S. Army Corps of Engineers. http://owww.cecer.army.mil/paver/Paver.htm
- Croteau, J.M. and S.Q.S. Lee. 1997. Cold In-Place recycling: performance and practices. Paper presented at the Road Construction, Rehabilitation, and Maintenance Session of the XIIIth IRF World Meeting, Toronto, Canada.
- Epps, J.A. 1990. NCHRP Synthesis of Highway Practice 160: Cold-Recycled Bituminous Concrete Using Bituminous Materials. Washington, DC: Transportation Research Board.
- Epps, J.A., D.N. Little, R.J. Holmgreen, and R.L. Terrel. 1980. Guidelines for Recycling Pavement Materials. NCHRP Report 224. Washington, DC: Transportation Research Board.
- FHWA. 1975. *Recycled Asphalt Concrete*. Implementation Package 75-5. Washington, DC: Federal Highway Administration.
- FHWA. 1977. Initiation of National Experimental and Evaluation Program (NEEP). Project No. 22, Pavement Recycling. Notice N 5080.64. Washington, DC: Federal Highway Administration.
- FHWA. 1978a. NCHRP Synthesis of Highway Practice 54: Recycling Materials for Highways. Washington, DC: Federal Highway Administration.
- FHWA. 1978b. Concrete Recycling Project Ready. FHWA Newsletter, 8 (October).
- FHWA. 1978c. *Highway Focus*, 10(1). Washington, DC: Federal Highway Administration.
- FHWA. 1987. Pavement Recycling Guidelines for Local Governments: Reference Manual. Report No. FHWA-TS-87-230. Washington, DC: Federal Highway Administration.
- FHWA-LTPP Technical Support Services Contractor. 2000. LTPP Manual for Falling Weight Deflectometer Measurements: Operational Field Guidelines. Version 3.1. Beltsville, MD: LAW PCS.
- Forsyth, R. 1985. Caltrans AC Pavement Recycling Program. Memo to District Materials Engineers. Sacramento, CA: California Department of Transportation.
- Hassan, A. 1996. The Effect of Material Parameters on Dynamic Cone Penetrometer Results for Fine-Grained Soils and Granular Materials. Doctoral dissertation, Oklahoma State University.
- Heukelom, W. and C.R. Foster. 1960. Dynamic testing of pavements. *Journal of Soil Mechanics and Foundation Engineering*, 86(1).

- Heukelom, W. and A.J.G. Klomp. 1962. Dynamic testing as a means of controlling pavements after construction. *Proceedings, International Conference on Structural Design of Asphalt Pavements, Ann Arbor, MI*, 667–679.
- Hicks, R.G., D.D. Allen, T. Oguara, R. Davis, and D. Foster. 1987. Development of Improved Mix Design and Construction Procedures for Cold In-Place Recycled Pavements, 1984– 1986 Construction Projects. Volume I. Salem, OR: Oregon State Department of Transportation.
- Hicks, R.G, E.S. Richardson, I.J. Huddleston, N.C. Jackson. 1995. Open-Graded Emulsion Mixtures: 25 Years of Experience. Paper presented at the Sixth International Conference on Low-Volume Roads, Washington, DC.
- Highway Research Board (HRB). 1955. *The WASHO Road Test-Part 2: Test Data, Analysis, Findings*. Special Report 22. Washington, DC: Western Association of State Highway Officials (WASHO).
- Hveem, F.N. 1995. Pavement deflections and fatigue failures. *Highway Research Bulletin*, 114, 43-87.
- Hveem, F.N., E. Zube, R. Bridges, and R. Forsyth. 1962. The effect of resilience-deflection relationship on the structural design of asphaltic pavement. *Proceedings, International Conference on Structural Design of Asphalt Pavements, Ann Arbor, MI*, 649-666.
- Irwin, L.H. 2002. Backcalculation: An overview and perspective. Paper presented at the FWD/Backanalysis Workshop, 6th International Conference on the Bearing Capacity of Roads, Railways, and Airfields, Lisbon, Portugal.
- Isada, N.M. 1966. *Detecting variations in load-carrying capacity of flexible pavements*. National Cooperative Research Program Report 21. Washington DC: National Research Council, Highway Research Board.
- Jahren, C.T., B. Cawley, B. Ellsworth, and K.L. Bergeson. 1998a. Review of Cold In-Place Asphalt Recycling in Iowa. *Proceedings of the Crossroads 2000 Conference*. Ames, IA: Iowa Department of Transportation and Iowa State University. 259–263. http://www.ctre.iastate.edu/pubs/crossroads/259review.pdf
- Jahren, C.T., B.J. Ellsworth, B. Cawley, and K. Bergeson. 1998b. Review of Cold In-Place Recycled Asphalt Concrete Projects. IHRB Project HR-392. Ames, IA: Department of Civil and Construction Engineering, Iowa State University.
- Jahren, C.T., B.J. Ellsworth, and K. Bergeson. 1999. Constructability test for cold in-place asphalt recycling. *Journal of Construction Engineering and Management (ASCE)*, 125(5), 325–329.
- Kandhal, P.S. and W.C. Koehler. 1987. Cold Recycling of Asphalt Pavements on Low Volume Roads. *Transportation Research Record*, 1106, 156–163.
- Kearney, E. 1997. Cold Mix Recycling: State-of-the-Practice. *Journal of the Association of Asphalt Paving Technologists*, 66, 760–802.
- Kim, Y.R. and H. Park. 2002. Use of Falling Weight Deflectometer Multi-Load Data for Pavement Strength Estimation. Final Report. Report No. FHWA/NC/2002-2006. Raleigh, NC: North Carolina Department of Transportation.
- Kim, Y. and H.D. Lee. 2006. Development of mix design procedure for cold in-place recycling with foamed asphalt. *Journal of Materials in Civil Engineering*, 18(1), 116–124.
- Kleyn, E.G. and P.E. Savage. 1982. The Application of the Pavement DCP to Determine the Bearing Properties and Performance of the Road Pavements. Paper presented at the International Symposium on Bearing Capacity of Roads and Airfields, Trodheim, Norway.

- Lawing, R.J. 1976. Use of Recycling Materials in Airfield Pavements-Feasibility Study. Report AFCEC-TR-76-7. Tyndall Air Force Base, FL: Air Force Civil Engineering Center.
- Lee, H.D., J. Kim, C.T. Jahren, D. Chen. 2006. Long-Term Performance of Cold In- Place Recycled Roads in Iowa. Paper presented at the Asphalt Recycling and Reclaiming Association Annual Meeting.
- Lauter, K.A. 1998. Field and Laboratory Investigation of the Effect of Cold In-Place Recycled Asphalt on Transverse Cracking. Doctoral dissertation. Carleton University, Canada.
- Manik, A. and K. Gopalakrishnan. 2004. Illi-Pave Based Pavement Moduli Backcalculation Using Artificial Neural Networks. Paper presented at the 15th Midwest Artificial Intelligence and Cognitive Science Conference, Schaumberg, IL.
- McDaniel, R.S. 1988. Cold In-Place Recycling of Indiana State Road 38. *Transportation Research Record*, 1196.
- McGrath, P.G. 1989. Dynamic Penetration Testing. Proceedings, Field and Laboratory Testing of Soils for Foundations and Embankments, Trinity College, Dublin.
- McGrath, P.G. et al. 1989. Development of Dynamic Cone Penetration Testing in Ireland. Proceedings, Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Brazil, 271–276.
- McKeen, R.G., D.I. Hanson, and J.H. Stokes. 1997. New Mexico's Experience with Cold In-Place Recycling. Paper presented at the 1997 Annual Meeting of the Transportation Research Board, Washington, DC.
- McQueen, R.D., W. Marsey, and J.M. Arze. 2001. Analysis of Nondestructive Test Data on Flexible Pavements Acquired at the National Airport Pavement Test Facility. Atlantic City, NJ: Federal Aviation Administration.

http://155.178.136.29/NAPTF/Download/pubs/Analysis_of_NDT_data.PDF Melzer, K.J., and U. Smoltczyk. 1982. Dynamic Penetration Testing-State of the Art Report. Proceedings Second European Symposium on Penetration Testing Amsterdam

- Proceedings, Second European Symposium on Penetration Testing, Amsterdam, Netherlands, 191–202.
- Mitchell, J.M. 1988. New Developments in Penetration Tests and Equipment. *Proceedings, First International Symposium on Penetration Testing, Orlando, Florida*, 245–262.
- National Asphalt Pavement Association (NAPA). 1977. Hot Recycling of Yesterday. *Recycling Report*, 1(2).
- Nijboer, L.W. and C.T. Metcalf. 1962. Dynamic testing at the AASHTO Road Test. Proceedings, International Conference on Structural Design of Asphalt Pavements, Ann Arbor, MI, 713–721.
- Pidwerbesky, B. 1997. Evaluation of non-destructive in situ tests for unbound granular pavements. *IPENZ Transactions*, 24(1), 12–17.
- Rahim, A. and K.P. George. 2003. Falling Weight Deflectometer for Estimating Elastic Moduli. *Journal of Transportation Engineering*, 129(1), 100–107.
- Rand, D.W. 1978. Cold Recycling of Pavement Using the Hammermill Process. Report No. FHWA-ME-TP-78-14. Washington, DC: Federal Highway Administration, Maine Department of Transportation.
- Robert, F.L., P.S. Kandhal, E.R. Brown, D.Y. Lee, and T.W. Kennedy. 1996. Hot Mix Asphalt Materials, Mixture Design, and Construction. 2nd Edition. Lanham, MD: National Asphalt Pavement Association.
- Scala, A.J. 1956. Simple Methods of Flexible Pavement Design Using Cone Penetrometers. *New Zealand Engineering*, 11(2).

- Scholz, T.V., R.G. Hicks, and D.D. Allen. 1988. Mix Design Practices for Cold In-Place Recycled Pavements. Paper presented at ASTM conference.
- Scholz, T.V., D.F. Rogge, R.G. Hicks, and D.D. Allen. 1991. Evaluation of Mix Properties of Cold In-Place Recycled Mixes. *Transportation Research Record*, 1317.
- Scrivner, F.H., G. Swift, W.M. Moore. 1966. A new research tool for measuring pavement deflection. *Highway Research Record*, 129, 1–11.
- Shahin, M.Y. and J.A. Walther. 1990. *Pavement Maintenance Management for Roads and Streets Using the PAVER System.* USACERL TRM-90/05. Champaign, IL: U.S. Army Corps of Engineers.
- Shalaby, A. 1997. Analytical and Experimental Investigation of Thermal Cracking in Asphalt Pavement. Doctoral dissertation, Carleton University, Canada.
- Thomas, T. and A. Kadrmas. 2003. Performance-Related Tests and Specifications for Cold In-Place Recycling: Lab and Field Experience. Paper presented at the 2003 Annual Meeting of the Transportation Research Board, Washington, DC.
- White, D.J., K.L. Bergeson, and C.T. Jahren. 2002. *Embankment Quality: Phase III*. Final Report. Ames, IA: Iowa Department of Transportation.
- Wohlscheid, T.E. 1995. In-Place Pavement Recycling in New York State. Paper presented at the 19th Annual Meeting of the Asphalt Emulsion Manufacturers Association, San Diego, CA.
- Wood, L.E., T.D. White, and T.B. Nelson. 1988. Current Practice of Cold In-Place Recycling of Asphalt Pavements. *Transportation Research Record*, 1178.
- Zeisner, G.F. 1995. *Cold In-place Recycling in the Regional Municipality of Ottawa-Carleton*. Ottawa, ON: Regional Municipality of Ottawa-Carleton Transportation Departement, Infrastructure Maintenance Division.
- Zhang, Z., G. Claros, L. Manuel, and I. Damnjanovic. 2003. Evaluation of the pavement structural condition at network level using falling weight deflectometer (FWD) data. Paper presented at the 82nd Annual Meeting of the Transportation Research Board, Washington, DC.

APPENDIX A. QUESTIONNAIRE TO COUNTY ENGINEERS

County: Road:

1. What are the current support and drainage conditions for this section compared to other roads in your jurisdiction?

2. Could you please provide updated traffic information, including the proportion of truck traffic? Is there anything noteworthy about the truck traffic? Are there any specific truck traffic generators (e.g., elevator, quarry, industry, etc) that we should be aware of?

3. Last time we examined this road in 1996. Since then, have there been any other changes to these road or traffic that we should be aware of?

* Please return the questionnaire in the provided envelope.

APPENDIX B. LOCATIONS OF SAMPLED ROADS

Boone E-52 and Boone 198th

Cerro Gordo SS and Cerro Gordo B-43

	A.		i-	1	12	La-) PI	jà-	15	t jen	D R
Fa - La	(SEV	the state	-	175		ck ers		5	1556	-	e
2 EEE	1 = 2	1-5	7.0	19		Transverse crack begin from S56, others 1500ft) continued from transverse crack			z	0 5	N 998
Kenned S. N	19	L'E	-	T	1	S56 Verse		R	- 200 (*W	-
	that I	1-1-1-1	-	A		from			3	Su / Ja	(ES)
W N N	13	-	-	4.4		egin om t			in the	N. E	the start
The sale	A AR	an .	+7.	B	43	ick b led fr			7 = = = = = = = = = = = = = = = = = = =	171	al.
ta ta	X		m	-	lo: B	e cra ntinu		~	1. T	1 Part	-
NT NT	3	- Maria	a A	SM 8	Cerro Gordo: B-43	t) co	1	Time	Ja .	2	× J
A REAL	S in	2	= (K S	erro	500f	survey]	2	1	M	LA
a de la companya de l	*	- EM	a 115	L H	O		S	the t	NOL 1	530	A Mark
112 St.	H		7	Z	an	No.	-	-	CALE -	- f	EA
	H	1-5	THE A	M	RE	R 85	A C	- 64	1	=	P 1
2 (0) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E E	S. S.	-	-	۸ a (ک)	*	F	1-3	-	8	No Se
E		Cerro Gordo: S. S.	X	11	K	R I I	×	-@	a		
DIE AR LAKE	A L	0 Go	() 	-	R1	B55	a.	~	=	5=	-NOL
H GE	y	Cerro	(nncl)	421	13	-	×.	1	21	N	RI S
					12	NT N R				-	* (III)
	24	18	5	-	- ar	-	R	5~	No-	G SIA P	R
120 MW 42	-	COLOR GRUDOR	- Ma	2=	1	8	II.	6 850	120 JW10 TW1400	***	-
N96-1				NS	6-1	1.0	-		N94873 -	NAE	-1

Clinton Z-30 and Clinton E-50

Greene IA-144

B-11

Guthrie IA-4

B-14

Muscatine Y-14, Muscatine F-70, and Muscatine G-28

Tama V-18 and Tama E-66

Winnebago R-60and Winnebago R-34

THDW	N001-1		7945/MF N555-1 (長) 295/294 (元) (元)						an and a second and a second and a second a seco						
Pa	π	2 2.4				e R H	"	NE NE	12	- ×					
F	RE B	A	J			K	-	r [T	* H	2/	м			
		A HERE		E C	es Tel	Z	KIZ N	4	۵Z		22 218	82			
	2	and an	-10	- 4	*F \$	R	1	•	-	1)		-			
P	-	RIDA	-	-	и и	-	H		- 9	Para	R	R			
1 .	SCARVILL	я Zд	850	-	100	t t	h]	E	. 2	<u></u> >	-	1			
z	H AR	8	-	a(19)	~	#00	nort	15	-	-00	E.	No.			
1	a	-	2	- [2/	4	32 to	H-	1	S IM	-	ALL			
C	ur 11		1			Vinnebago: R-34	from house 39332 to north]	也	R	18					
To	-	from	-	-	2	oago	ouse	2	-	2	ii Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				
	-	Winnebago: R-60 [Crack and rutting start from 475th to south]	- AN	-1	-	innel	om h	5	C	1001	A A	il an			
_		-60 ting		-t	- 1	-	2.Ë	21	Ç-	-	1	1			
		Winnebago: R-60 [Crack and rutting 475th to south]	_	-	-		5	-	a/	-	2				
	19 IQ	ebag k an to s	834	-			8 2 ^m	FEH 2	-	- Cl	SA.	1			
5]	-	Vinn Crac		0	2	- ANDAL	1	-		A	Z RAN				
-	*	EXT-	-	- 2	}	2	2	- 11	~		z~13				
-		me a	- 2				0	4		ť	-	- MAR			
1		R R	1	5		A	-	-	-34) sta orth]	2	10			
-	N N S			-	_	North R	1E		go: R	735ft to ne	2	No.			
			1	2	-	N 11 4		al -	Winnebago: R-34	Trans (2735ft) start rom A42 to north]	×	2			
LI BU	ā		-8	· - Y	N	~		-12	Winn	[Trans (2/35ft) sta from A42 to north]	H	-			
-			1	-6	11 E20	11 L L L L L L L L L L L L L L L L L L		4		10-	R	F2			
1			-			1]			P		7	-			

Carroll N-58 and Carroll N. of Breda

Story S-27 and Story S-14
Jackson US-61

Delaware US-20

APPENDIX C. LABORATORY TESTING DATA

Table C.1. Lab testing data, G_{mb}

		A	В	С	Gmb	Absorption		Comel	e Thicl			Remark
		Mass of Dru	Mass of	L Mass of	Bulk Specific	(B-A)/(B-C)	1	Sampi 2	e i nici 3	4	AVE.	nemark
T D	Completing	·····	SSD Sample		•	X 100		2	3	•	ATE.	
Test Day	Sample I.D	Sample in			Gravity	× 100						
		Air	in Air	in water	[A/(B-C)]							
		(g)	(9)	(9)		(%)			(in)			
6/15/2005		848.7	852.8		2.193		-	2	2	2	2	
	Tama/E66/1/2	826.8		452.6	2.177			2	2	2	2	
	Tama/E66/1/3	755.1	757	427	2.288			1 13/16	1 10/16		1 12/16	
	Tama/E66/2/1	848.9	849.9	475.9	2.270		1 14/16	1 14/16	1 14716	1 14/16	1 14/16	
	Average				2.232	0.844					1.902	
Sta	andard Deviation				0.055	0.532					0.127	
6/27/2005	Montgomery/IA48/1a/1	823.1	824.2	464.2	2.286	0.306	1 14/16	1 14716	1 14/16	1 14/16	1 14/16	
	Montgomery/IA48/2/1	941.9	943.1	528.3	2.271	0.289	2	2	2	2	2	
	Montgomery/IA48/3/1	918.8	920.2	514.3	2.264	0.345	2	2	2	2	2	
	Montgomery/IA48/4b/1	810.5	813.1	447.9	2.219	0.712	1 13/16	1 14/16	1 14716	1 14/16	1 14/16	
	Montgomery/IA48/4b/2	919.5	921.9	511.2	2.239	0.584	2	2	2	2	2	
	Montgomery/IA48/5a/1	887.4	888.5	496.4	2.263	0.281	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Montgomery/IA48/6a/1	853	854.1	476.6	2.260	0.291	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Average				2.257	0.401					1.926	
Sta	andard Deviation				0.022	0.174					0.069	
6/27/2005	Clinton/E50/1/1	835.4	843.2	453.6	2.144	2.002	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Clinton/E50/1/2	758.6	769.5	405.4	2.083	2.994	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Clinton/E50/2/1	789.6	799.2	428.8	2.132	2.592	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Clinton/E50/2/2	780.2	790.1	418	2.097	2.661	1 13/16	1 13/16	1 12/16	1 12/16	1 13/16	
	Clinton/E50/3/1	808.5	827.3	449.6	2.141	4.977	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Clinton/E50/5/1	822.7	826.4	449.5	2.183	0.982	1 14/16	1 14/16	1 14/16	1 14/16	1 14/16	
	Average				2.130	2.701					1.859	
Sta	andard Deviation				0.036	1.321					0.038	
6/27/2005	Jackson / US61/2a/1	925.9	928.1	510.6	2.218	0.527	2 1/16	2	2	2	2	
	Jackson / US61/3a/1	922.6	926.3	516	2.249	0.902	2	2 1/16	2 1/16	2	2 1/16	
	Jackson / US61/4/1	897.1	905.3	498.8	2.207	2.017	2 1/16	2 1/16	2 1/16	2	2 1/16	
	Jackson / US61/5/1	896.3	899.8	492.7	2.202	0.860	2	2	2	2	2	
	Average				2.219	1.076					2.023	
Sta	andard Deviation				0.021	0.649					0.020	

		A	В	C	Gmb	Absorption		Sampl	le Thicl	iness		Remark
		Mass of Dry	Mass of	Mass of	Bulk Specific	(B-A)/(B-C)	1	2	3	4	AVE.	
Test Day	Sample I.D	Sample in	SSD Sample	Sample	Gravity	X 100						
		Air	in Air	in water	[A/(B-C)]							
		(9)	(9)	(g)		(%)			(in)			
6/27/2005	Muscatino/F70/2	370.4	373.1	200	2.140	1.560	12/16	12/16	12/16	12/16	12/16	Not for ID
	Muscatino/F70/3	575.9	585.6	308.6	2.079	3.502	1 2/16	1 2/16	1 2/16	1 2/16	1 2/16	
	Muscatino/F70/4	642.7	652.1	344.5	2.089	3.056	1 4/16	1 4/16	1 4/16	1 4/16	1 4/16	
	Muscatino/F70/6	446.9	449.6	246.5	2.200	1.329	12/16	12/16	12/16	12/16	12/16	Not for ID
	Average				2.127	2.362					0.969	
Sta	andard Deviation				0.056	1.079					0.258	
6/27/2005	Muscatine/Y14(S)/1/1	891.2	892.7	481.3	2.166	0.365	2	2	2	2	2	
	Muscatine/Y14(S)/2/1	888.9	896	489.6	2.187	1.747	2	2	2	2	2	
	Muscatine/Y14(S)/4/1	919.8	931.2	509	2.179	2.700	2	2	2 5/16	2 5/16	2 3/16	
	Muscatine/Y14(S)/6/1	904.6	911	500.8	2.205	1.560	2	2	2	2	2	
	Muscatine/Y14(S)/6/2	864.6	870.8	468.8	2.151	1.542	2	2	2	2 1/16	2	
	Average				2.178	1.583					2.034	
Sta	andard Deviation				0.021	0.831					0.068	
6/27/2005	Muscatine/Y14(N)/1/1	896.5	898.1	490.8	2.201	0.393	2	2	2 1/16	2	2	
	Muscatine/Y14(N)/2/1	888.8	898.2	484.4	2.148	2.272	2	2 1/16	2	2	2	
	Muscatine/Y14(N)/3/1	876.9	884.1	473	2.133	1.751	2	2	2	2	2	
	Muscatine/Y14(N)/4/1	898.7	908.9	489	2.140	2.429	2	2 1/16	2	2	2	
	Muscatine/Y14(N)/5/1	909.6	916	498.6	2.179	1.533	2	2	2	2	2	
	Muscatine/Y14(N)/6/1	871.5	887	469.5	2.087	3.713	2	2	2	2	2	
	Average				2.148	2.015					2.008	
Sta	andard Deviation				0.039	1.100					0.009	
6/27/2005	Muscatine/G28W/2/1	906.3	908.3	499.1	2.215	0.489	2	2	2	2	2	
	Muscatine/G28W/3/1	873.8	884.2	477	2.146	2.554	2	2	2	2	2	
	Muscatine/G28W/4/1	929.2	934.6	521.5	2.249	1.307	2	2	2	2	2	
	Muscatine/G28W/6/1	858	875.4	471.3	2.123	4.306	2	2	2	2	2	
	Average				2.183	2.164					2.000	
Sta	andard Deviation				0.059	1.661					0.000	
6/27/2005	Muscatine/G28E/2/1	830.9	838	439.2	2.084	1.780	2	2	1 15/16	1 15/16	2	
	Muscatine/G28E/3/1	813.1	826	430.5	2.056	3.262	1 15/16	1 15716	1 15/16	1 15/16	1 15/16	
	Muscatine/G28E/5/1	836.3	854.5	446.1	2.048	4.456	2	2	1 14/16	1 14/16	1 15/16	
	Muscatine/G28E/6/1	825.7	837.5	438.3	2.068	2.956	2	2	2	2	2	
	Average				2.064	3.114					1.961	
Sta	andard Deviation				0.016	1.100					0.030	

		A	В	С	Gmb	Absorption		Sampl	e Thick	ness		Remarl
		Mass of Dry	Mass of	Mass of	Bulk Specific	(B-A)/(B-C)	1	2	3	4	AVE.	
Test Day	Sample I.D	Sample in	SSD Sample	Sample	Gravity	X 100						
	_	Air	in Air	in water	[A/(B-C)]							
		(9)	(9)	(9)	· · · ·	(%)			(in)			
6/28/2005	Hardin/D35/1/1	924.5	925.8	517.5	2.264	0.318	2	2	2	2	2	
	Hardin/D35/2/1	878.7	881.2	485.9	2.223	0.632	1 14/16	2	2	2	2	
	Hardin/D35/3/1	862.7	865.1	470.3	2.185	0.608	1 14/16	2	2	2	2	
	Hardin/D35/4/1	886.5	888.7	484.7	2.194	0.545	2	2	2	2	2	
	Hardin/D35/5/1	984.2	988.5	537.1	2.180	0.953	2	2	2	2	2	
	Hardin/D35/6/1	881.4	884.1	488.4	2.227	0.682	2	2	2	1 15/16	2	
	Average				2.212	0.623					1.987	
St	andard Deviation				0.032	0.206					0.015	
6/28/2005	Clintone/Z30/1/1	843.2	846.5	464	2.204	0.863	1 14/16	1147°6	1 14/16	1 14/16	1 14/16	
	Clintone/Z30/2/1	897.7	903.8	493.4	2.187	1.486	2	2	2	2	2	
	Clintone/Z30/3/1	789.3	812.5	442	2.130	6.262	1 13/16	1 13/16	1 13/16	1 13/16	1 13/16	
	Clintone/Z30/4/1	884.4	897	486.6	2.155	3.070	2	2	2	2	2	
	Clintone/Z30/5/1	960.3	962.2	549	2.324	0.460	2	2	2	2	2	
	Clintone/Z30/6/1	890.5	907.1	498.6	2.180	4.064	2	2	2	2	2	
	Average				2.197	2.701					1.948	
Sta	andard Deviation				0.068	2.216					0.083	
6/28/2005	Cerro Codo/B43/2/1	849.8	855.1	473.8	2.229	1.390	2	2	2	1 10/16	1 15/16	
	Cerro Codo/B43/3/1	845.5	853.7	468.1	2.193	2.127	2	2	2	2	2	
	Cerro Codo/B43/4/1	829.5	833.4	456.8	2.203	1.036	2	2	1 13/16	1 13/16	1 15/16	
	Cerro Codo/B43/5/1	826.3	839.7	455	2.148	3.483	1 13/16	1 13/16	2	1 13/16	1 14/16	
	Cerro Codo/B43/6/1	838.6	844.6	459	2.175	1.556	1 13/16	1 10/16	1 10/16	1 13/16	1 12/16	
	Average				2.189	1.918					1.878	
Sta	andard Deviation				0.030	0.959					0.103	
6/28/2005	Cerro Codo/SS/5/1	852.3	854	468.3	2.210	0.441	1 15/16	1 15/16	1 15716	1 15/16	1 15/16	
	Cerro Codo/SS/5/2	881.4	883	479.8	2.186	0.397	2	2	1 15716	1 15/16	2	
	Cerro Codo/SS/5/3	880	881.3	476.6	2.174	0.321	1 14/16	2	2	1 14/16	1 15/16	
	Cerro Codo/SS/6/1	801.7	803.7	428.2	2.135	0.533	1 13/16	1 13/16	1 14/16	1 15/16	1 14/16	
	Average				2.176	0.423					1.926	
St	andard Deviation				0.031	0.088					0.047	

		A	В	С	Gmb	Absorption		Sampl	le Thicl	ness		Remar
		Mass of Dry	Mass of	Mass of	Bulk Specific	(B-A)/(B-C)	1	2	3	4	AVE.	
Test Day	Sample I.D	Sample in	SSD Sample	Sample	Gravity	X 100						
		Air	in Air	in water	[A/(B-C)]							
		(9)	(9)	(9)		(%)			(in)			
6/28/2005	Tama/V18(B)/1/1	903.6	909.9	487.6	2.140	1.492	2	2	2 1/16	2 1/16	2 1/16	
	Tama/V18(B)/2/1	866.6	867.9	479	2.228	0.334	1 15/16	2	2	2	2	
	Tama/V18(B)/2/2	848.7	850.1	460.5	2.178	0.359	2	2	1 15/16	1 15/16	2	
	Tama/V18(B)/3/1	885.8	887.4	487.7	2.216	0.400	2	2	2	2	2	
	Tama/V18(B)/3/2	853.9	855.6	460.4	2.161	0.430	2	2	1 15/16	2	2	
	Tama/V18(B)/4/1	871.5	873.3	489.3	2.270	0.469	2	2	1 14/16	2	2	
	Tama/V18(B)/4/2	835.4	837	453.3	2.177	0.417	2	1 14/16	1 14/16	1 14/16	1 15/16	
	Tama/V18(B)/5/1	858.1	860	466.8	2.182	0.483	2	2	2	2	2	
	Average				2.194	0.548					1.980	
Sta	andard Deviation				0.042	0.385					0.036	
6/28/2005	Boone/198th/1/1	899.7	900.8	512	2.314	0.283	1 15/16	1 15/16	2	2	2	
	Boone/198th/1/2	906.8	908.3	518.1	2.324	0.384	2	1 15/16	1 15/16	1 15/16	1 15/16	
	Boone/198th/2/1	863.5	865.5	487	2.281	0.528	2	1 15/16	1 13/16	1 15/16	1 15/16	
	Boone/198th/2/2	927.6	929.6	528.3	2.311	0.498	1 15/16	1 15/16	1 14/16	1 14/16	1 15/16	
	Boone/198th/3/1	913.5	915	519.5	2.310	0.379	1 14/16	2	1 14/16	1 13/16	1 14/16	
	Boone/198th/4/1	884.2	885.9	494.3	2.258	0.434	2	2	1 15/16	1 15/16	2	
	Boone/198th/4/2	899.7	901	506.5	2.281	0.330	2	1 13/16	2	1 14/16	1 15/16	
	Boone/198th/5/1	911.8	913.6	518.3	2.307	0.455	2	2	2	2	2	
	Boone/198th/6/1	883	884.7	498.6	2.287	0.440	1 15/16	1 15/16	1 15/16	1 15/16	1 15716	
	Boone/198th/6/2	822.8	824.8	442	2.149	0.522	2	1 14/16	1 13/16	1 13/16	1 14/16	
	Boone/198th/7/1	930.7	932.8	530.1	2.311	0.521	2	1 14/16	1 13/16	1 13/16	1 14/16	
	Boone/198th/7/2	889.6	891.6	499.7	2.270	0.510	2	1 15/16	1 15/16	1 13/16	1 15/16	
	Average				2.284	0.441					1.928	
Sta	andard Deviation				0.047	0.082					0.039	
6/28/2005	Boone/E52/1/1	928.3	930	521.9	2.275	0.417	2	2	2	2	2	
	Boone/E52/2/1	864.3	868.7	463.8	2.135	1.087	1 13/16	1 14/16	2	2	1 15/16	
	Boone/E52/3/1	896.1	899.5	492.7	2.203	0.836	2	2	1 15/16	2	2	
	Boone/E52/4/1	868.5	873.3	474.5	2.178	1.204	2	2	1 15/16	1 15/16	2	
	Boone/E52/5/1	851.6	860	456.9	2.113	2.084	2	2	1 13/16	2	1 15716	
	Boone/E52/6/1	855.6	864.6	465.3	2.143	2.254	2	2	1 13/16	2	1 15/16	
	Boone/E52/7/1	851.9	855	458.6	2.149	0.782	1 13/16	2	2	2	1 15716	
	Boone/E52/8/1	862.5	869.5	470.8	2.163	1.756	2	1 15/16	1 13/16	1 14/16	1 15/16	
	Average				2.170	1.302					1.955	
Sta	andard Deviation				0.051	0.660					0.031	

		A	В	С	Gmb	Absorption		Same	e Thicl	INASS		Remar
		Mass of Dru	_	Mass of	Bulk Specific	(B-A)/(B-C)	1	2	3	4	AVE.	Treman
Fest Dau	Sample I.D	Sample in	SSD Sample		Gravity	X 100		2	3	•	ATL.	
rescibay	oumpre 1.0	Air	in Air	in water	[AI(B-C)]	A 100						
		(9)	in Air (g)	in water (g)	INUD-CII	(%)			(in)			
C1001000E	Story/S14(SB)/4/1	897.5		19) 503.1	2.265		1 14/16	1 14/16		2	1 15/16	
612812009		589.2		321	2.265		1 14/15		1 5/16			
	Story/S14(SB)/4/2	089.2	594.4	321			1	1 4/16	1 2/16	1 4116		
	Average				2.210	1.191					1.570	
	andard Deviation				0.078	1.006					0.519	
6/28/2005	Story/S14(NB)/1/1	881.6	884	493.7	2.259			2	1 15/16			
	Story/S14(NB)/2/1	905.7	908.9		2.239		1 15/16	1 15/16	1 15/16		1 15/16	
	Story/S14(NB)/3/1	901.1	906.9	493.7	2.181		2	2	2	1 15716		
	Story/S14(NB)/4/1	885.7	889.8	488	2.204	1.020	2	2	2	2	2	
	Story/S14(NB)/5/1	879.8	886	484.5	2.191	1.544	2	2	1 14/16	1 14716	1 15/16	
	Story/S14(NB)/5/2	885.8	891.6	488.4	2.197	1.438	2	2	2	2	2	
	Average				2.212	1.135					1.974	
St	andard Deviation				0.030	0.383					0.026	
6/28/2005	Butler/T16/1/1	889.6	894.9	490.4	2.199	1.310	2 1/16	2 1/16	2	1 15/16	2	
	Butler/T16/2/1	880.6	889.2	481.3	2.159	2.108	2 1/16	2 1/16	2	2	2 1/16	
	Butler/T16/3/1	891.2	893	490.3	2.213	0.447	2	2	1 15/16	1 15/16	2	
	Butler/T16/4/1	875.2	879.9	478.8	2.182	1.172	2 1/16	2 1/16	2	2	2 1/16	
	Butler/T16/5/1	869.6	872.9	474	2.180	0.827	2	2	2	2	2	
	Butler/T16/6/1	879.4	882.9	482.4	2.196	0.874	2	2	2	2	2	
	Average				2.188	1.123					2.008	
St.	andard Deviation				0.019	0.568					0.024	
6/28/2005		901.3	903.5	492.2	2.191		2	2	2	2	2	
	Calhoun/IA175/4/1	900.2	902.7	492.1	2,192	0.609		2	2	2	2	
	Calhoun/IA175/5/1	905.5	907.9	491.5				2	2	2	2	
	Average				2.186	0.573	_				2.000	
St.	andard Deviation				0.010	0.037					0.000	
	Carroll/N58/1/1	906.8	908.4	508.3			2	2	2	2	2	
	Carroll/N58/2/1	918.4	920.2	516.9	2.277	0.446	-	2	2	2	2	
	Carroll/N58/3/1	852.4	867.1		2.129			2	2	2	2	
	Carroll/N58/4/1	830.3	848.4	459.5	2.125		1 15/16	-	1 15/16	-	-	
	Carroll/N58/6/1	872.5	888.8	476.3	2.100		2	2	2	2	2	
	Carroll/N58/6/2	841.1		476.3	2.109		-			1 15/16	-	
		041.1	064.4	400.6	2.103	0.843 3.161	1 Iori6	T IOFI6	T IOFI6	110116	1.979	
	Average					2.249					0.032	
50	andard Deviation				0.078	2.243					0.032	

		A	В	С	Gmb	Absorption		Sampl	e Thic	iness		Remark
			_	Mass of	Bulk Specific		1	2	3	4	AVE.	
Test Da	Sample I.D	Sample in	SSD Sample	Sample	Gravity	X 100	-	-	-	-		
-		Air	in Air	in water	[A/(B-C)]							
		(9)	(a)	(g)		(%)			(in)			
6/29/2005	Carroll/N of Breda /2/1	890.4	898.5		2,193	1.995	1 14/16	2	2	2	2	
	Carroll/N of Breda /3/1	700.8	715.4	382.7	2.106	4.388	1 9/16	1 9/16	1 9/16	1 9/16	1 9/16	
	Carroll/N of Breda /5/1	865.1	873	471.2	2.153	1.966	1 14/16	1 15/16		2	1 15/16	
	Carroll/N of Breda /6/1	1083.4	1094.5	593	2.160	2.213	2 6/16	2 6/16	2 6/16	2 7/16	2 6/16	
	Average				2.153	2.641					1.969	
Sta	andard Deviation				0.036	1.170					0.338	
6/29/2005	Winnebago/R34A /1/1	982.6	986.7	530.1	2.152	0.898	2 5/16	2 5/16	2 5/16	2 5/16	2 5/16	
	Winnebago/R34A /4/1	722.2	725.6	385.8	2.125	1.001	1 5/16	1 11/16	1 2/16	1 2/16	1 5/16	
	Average				2.139	0.949					1.813	
Sta	andard Deviation				0.019	0.073					0.707	
6/29/2005	Winnebago/R34B73/1	777.8	781	384	1.959	0.806	1 14/16	1 15/16	2	1 15/16	1 15/16	
	Winnebago/R34B /6/1	809.4	816.7	426.7	2.075	1.872	2	2	2	2	2	
	Average				2.017	1.339					1.969	
Sta	andard Deviation				0.082	0.754					0.044	
6/29/2005	Winnebago/R60/1/1	838	841.5	440	2.087	0.872	1 14/16	2	2	2	2	
	Winebagol/R60/2/1	827.2	832.2	434.9	2.082	1.258	1 14/16	2	2	2	2	
	Winebagol/R60/4/1	828.3	835.6	432.3	2.054	1.810	1 15/16	2	2	2 1/16	2	
	Average				2.074	1.313					1.979	
Sta	andard Deviation				0.018	0.472					0.018	
6/29/2005	Delaware/US20/1/2	895.7	898.1	500.7	2.254	0.604	2	2	2	2	2	
	Delaware/US20/2/1	906.2	908	513.8	2.299	0.457	2	2	2	2	2	
	Delaware/US20/2/2	846.8	850.2	462.9	2.186	0.878	2	2	2	2	2	
	Delaware/US20/3/1	899.5	901.5	505.5	2.271	0.505	2	2	2	2	2	
	Delaware/US20/4/1	881.7	883.8	491.7	2.249	0.536	2	2	2	1 14/16	2	
	Delaware/US20/6/1	890.8	893.2	498.1	2.255	0.607	2	2	2	2	2	
	Average				2.252	0.598					1.995	
Sta	andard Deviation				0.037	0.149					0.013	
6/29/2005	Greene/IA144/1/1	963.7	965.2	547.5	2.307	0.359	2	2	2	2	2	
	Green/IA144/2/1	949.1	950.8	535.4	2.285	0.409	2	2	2	2	2	
	Green/IA144/2/2	954.2	960.2	524.7	2.191	1.378	2	2	2	2	2	
	Green/IA144/2/3	915.2	917.2	517.1	2.287	0.500	2	2 1/16	2 1/16	2	2 1/16	
	Green/IA144/6/1	904.8	907.4	499.5	2.218	0.637	2	2	2	2	2	
	Average				2.258	0.657					2.006	
Sta	andard Deviation				0.050	0.417					0.014	
6/29/2005	Guthrie/IA412/2/1	805.8	807.8	442.4	2.205	0.547	1 5716	1 5716	1 5/16	1 5716	1 5/16	
	Guthrie/IA412/6/1	747.2	753	389.5	2.056	1.596	2	1 6/16	1 7/16	1 9/16	1 10/16	
	Average				2.130	1.071					1.453	
Sta	andard Deviation				0.106	0.741					0.199	

		A	В	С	Gmb	Absorption		Sampl	e Thic	iness		Remark
Test Day	Sample I.D	Mass of Dry Sample in	SSD Sample		Bulk Specific Gravity	(B-A)/(B-C) X 100	1	2	3	4	AVE.	
		Air	in Air	in water	[A/(B-C)]							
		(g)	(g)	(g)		(%)			(in)			
6/29/2005	Tama/V18(A)/1/1	874	876.5	477.7	2.192	0.627	2 1/16	2	2	1 15716	2	
	Tama/V18(A)/1/2	876	878.7	478.3	2.188	0.674	2 1/16	2	2	1 15/16	2	
	Tama/V18(A)/2/1	878.1	882.8	475.8	2.157	1.155	2	2	2	2	2	
	Tama/V18(A)/3/1	889.1	891	483.2	2.180	0.466	2	2	2	2 1/16	2	
	Tama/V18(A)/3/2	867.9	871.6	464.1	2.130	0.908	2	1 15/16	1 15/16	2	2	
	Tama/V18(A)/4/1	883.2	886.4	475.8	2.151	0.779	2	2	2	1 15716	2	
	Average				2.166	0.768					1.995	
Sta	andard Deviation				0.024	0.241					0.016	
6/29/2005	Harrison/144/1/1	936.3	938	524.2	2.263	0.411	2	2	2	2	2	
	Harrison/144/2/1	903.5	905.2	506.3	2.265	0.426	1 14/16	1 15/16	2	1 15716	1 15716	
	Harrison/144/3/1	926.9	928.7	516.3	2.248	0.436	2	2	2	2	2	
	Harrison/144/4/1	911	912.7	507.4	2.248	0.419	2	2	2	2	2	
	Harrison/144/5/1	911.9	913.7	507.2	2.243	0.443	2	2	2	2	2	
	Harrison/144/6/1	898	899.4	500.5	2.251	0.351	1 15/16	2	1 15/16	1 15/16	1 15/16	
	Average				2.253	0.414					1.982	
Sta	andard Deviation				0.009	0.033					0.029	

Table C.2.	Lab testing	g data, G _{mm}
------------	-------------	-------------------------

Sample ID	Bag	Sample	Weight of	Density of	Maximum
	Weight	Weight in	Sample	Water (g/cm3)	Specific
	(g)	air (g)	Opened in	for	Gravity
			Water (g)	temperature	(g/cm3)
				correction	
Tama/E66/1	76.500	2000.000	1167.000	0.99681	2.416
Tama/E66/2	76.400	2000.000	1166.800	0.99681	2.416
Montgomery/IA48/1	76.800	2000.100	1161.000	0.99733	2.400
Montgomery/IA48/2	76.000	2000.000	1158.200	0.99708	2.391
Clinton/E50/1	75.400	2000.100	1176.600	0.99708	2.445
Clinton/E50/2	76.000	2000.000	1173.500	0.99733	2.437
Jackson/US61/1	75.200	2000.100	1181.300	0.99681	2.458
Jackson/US61/2	75.400	2000.000	1181.600	0.99681	2.460
Muscatine/Y14(S)/1	75.900	2000.000	1167.400	0.99681	2.417
Muscatine/Y14(S)/2	76.400	2000.000	1167.500	0.99681	2.418
Muscatine/Y14(N)/1	76.100	2000.100	1177.800	0.99681	2.448
Muscatine/Y14(N)/2	75.800	2000.000	1177.200	0.99681	2.446
Muscatine/G28(W)/1	75.600	2000.000	1175.300	0.99681	2.441
Muscatine/G28(W)/2	76.500	2000.000	1176.900	0.99681	2.446
Muscatine/G28(E)/1	75.400	2000.000	1179.500	0.99681	2.453
Muscatine/G28(E)/2	75.500	2000.000	1177.000	0.99681	2.446
Hardin/D35/1	75.400	2000.000	1167.000	0.99681	2.416
Hardin/D35/2	75.300	2000.000	1163.800	0.99708	2.407
Clinton/Z30/1	75.800	2000.000	1186.600	0.99708	2.476
Clintone/Z30/2	75.800	2000.100	1183.500	0.99733	2.467
Cerro Godo/B43/1	75.600	2000.100	1188.100	0.99733	2.481
Cerro Godo/B43/2	75.200	2000.100	1184.000	0.99733	2.468
Cerro Godo/SS/1	75.2	2000.1	1177.1	0.997327	2.447
Cerro Godo/SS/2	75.3	2000.1	1172.4	0.997327	2.433

Sample ID	Bag	Sample	Weight of	Density of	Maximum
	Weight	Weight in	Sample	Water (g/cm3)	Specific
	(g)	air (g)	Opened in	for	Gravity
			Water (g)	temperature	(g/cm3)
				correction	
Tama/V18(b)/1	75.900	2000.000	1158.900	0.99733	2.394
Tama/V18(b)/2	75.900	2000.100	1161.100	0.99733	2.400
Story/S14(NB)/1	75	2000.1	1168.2	0.997075	2.42
Story/S14(NB)/2	75	2000.1	1161.7	0.997075	2.401
Calhoun/IA175/1	74.900	2000.100	1166.200	0.99733	2.415
Calhoun/IA175/2	74.700	2000.000	1167.300	0.99733	2.418
Bulter/T16/1	75.2	2000.1	1167.7	0.997327	2.419
Bulter/T16/2	75.6	2000	1163.4	0.997327	2.407
Boone/198th/1	75.300	2000.000	1172.200	0.99708	2.432
Boone/198th/2	75.500	2000.000	1179.800	0.99708	2.455
Boone/E52/1	75.3	2000	1162.9	0.997075	2.405
Boone/E52/2	74.8	2000.1	1162	0.997075	2.402
Green/IA144/1	76.100	2000.000	1166.900	0.99708	2.417
Green/IA144/2	75.400	2000.100	1166.900	0.99708	2.416
Tama/V18(A)/1	75.6	2000.1	1163	0.997327	2.406
Tama/V18(A)/2	75.4	2000	1161.7	0.997327	2.402
Harrison/IA44/1	75.400	2000.000	1146.500	0.99733	2.359
Harrison/IA44/2	75.300	2000.000	1147.000	0.99733	2.360
Carroll/N58/1	75.8	2000	1165.8	0.997327	2.414
Carroll/N58/2	75.1	2000	1156.8	0.997327	2.388
Winnebago/R60/1	75.200	2000.000	1162.900	0.99733	2.405
Winnebago/R60/2	75.200	2000.000	1156.400	0.99733	2.387
Delaware/US20/1	75.6	2000	1176.7	0.997327	2.446
Delaware/US20/2	75.5	2000	1171.3	0.997327	2.43
Carroll/Nof Brenda/1	75.200	2000.000	1170.900	0.99708	2.428
Carroll/Nof Brenda/2	75.600	2000.000	1170.700	0.99708	2.428

		P			F	9	it i		
	I.D	Ultimate applieed load to fail specimen	Calibrated Load		Value	Tensile strength		Sample Thickn ess	Remark (Sample State)
	1	lbf	lbf	1/20	IN	psi	KPa	IN	
Wet	Tama/E66/1/1	400	347	8.0	0.400	27.6	190.2	2	Uniform/No-Skew
	Tama/E66/1/2	200	162	8.0	0.400	12.9	88.8	2	Uniform/No-Skew
	Tama/E66/1/3	680	605	8.0	0.400	55.6	383.0	1 12/16	Uniform/Skew
	Tama/E66/2/1	300	254	8.0	0.400	21.6	148.8	1 14/16	Uniform/Skew
Avera		395	342	8.0	0.400	29.4	202.7	1.902	
	lard Deviation	207	191	0.0	0.000	18.5	127.2	0.127	
Dry	Tama E66	250	208	12.8	0.640	16.6	114.1		
Wet	Montgomery/IA48/1a/1	230	190	12.8	0.640	16.1	110.9	1 14/16	Uniform/No-Skew
	Montgomery/IA48/4b/1	500	439	5.2	0.260	37.2656	256.9	1 14/16	Uniform/No-Skew
	Montgomery/IA48/4b/2	400	347	6.8	0.340	27.6	190.2	2	Uniform/No-Skew
	Montgomery/IA48/5a/1	300	254	11.6	0.580	21.6	148.8	1 14/16	Uniform/Skew
Avera	ige	358	307	9.1	0.455	25.6	176.7	1.906	
Stand	lard Deviation	118	109	3.7	0.184	9.1	62.5	0.063	
Dry	Montgomery/IA48/2/1	310	263	8.4	0.420	21.0	144.5	2	Uniform/No-Skew
-	Montgomery/IA48/3/1	310	263	10.0	0.500	21.0	144.5	2	Uniform/No-Skew
	Montgomery/IA48/6/1	290	245	10.4	0.520	20.8	143.4	1 14/16	Uniform/No-Skew
Avera	age	303	257	9.6	0.480	20.9	144.1	1.569	
Stand	lard Deviation	12	11	1.1	0.053	0.1	0.7	0.844	
Wet	Clinton/E50/1/1	510	448	8.0	0.400	38.0	262.3	1 14/16	Uniform/No-Skew
	Clinton/E50/2/2	230	190	4.0	0.200	16.6415	114.7	1 13/16	Skew
	Clinton/E50/5/1	430	374	8.0	0.400	31.8	219.1	1 14/16	Uniform/No-Skew
Avera	age	390	337	6.7	0.333	28.8	198.7	1.854	
	lard Deviation	144	133	2.3	0.115	11.0	75.9	0.036	
Dry	Clinton/E50/1/2	550	485	4.0	0.200	41.2	284.0	1 14/16	Uniform/No-Skew
-	Clinton/E50/2/1	650	578	6.0	0.300	49.0	338.1	1 14/16	Uniform/No-Skew
	Clinton/E50/3/1	500	439	6.0	0.300	37.3	256.9	1 14/16	Uniform/No-Skew
Avera		567	501	5.3	0.267	42.5	293.0	1.503	
	lard Deviation	76	71	1.2	0.058	6.0	41.3	0.820	

Table C.3. Lab testing data, IDT_{wet} and IDT_{dry}

		Р			F		St		
	I.D	Ultimate applieed load to fail	Calibrated Load	Flow	¥alue	Tensile	strength	Sample Thickn ess	Remark (Sample State)
		lbf	lbf	1/20	IN	psi	KPa	IN	
Wet	Jackson / US61/2a/1	180	143	10.0	0.500	11.4	78.6	2	Uniform/Skew
	Jackson / US61/3a/1	180	143	8.4	0.420	11.1	76.2	2 1/16	Uniform/Skew
	Jackson / US61/4/1	110	79	10.0	0.500	6.3	43.1	2	Uniform/No-Skew
	Jackson / US61/5/1	160	125	8.0	0.400	9.6	66.4	2 1/16	Uniform/No-Skew
Average		158	123	9.1	0.455	9.6	66.1	2.031	
Standar	d Deviation	33	31	1.1	0.053	2.3	16.2	0.036	
Dry	Muscatine/F70/3/1	100	100	4.8	0.240	12.7	87.4	1 4/16	Non-Uni (H)
-	Muscatine/F70/4/1	150	150	4.0	0.200	18.1	125.1	1 5/16	Non-Uni (H)
Average	•	125	125	4.4	0.220	15.4	106.2	1.157	
Standar	d Deviation	35	35	0.6	0.028	3.9	26.7	0.827	
Wet	Muscatine/Y14(S)/1/1	550	485	N/A	NłA	38.6	266.2	2	Uniform/No-Skew
	Muscatine/Y14(S)/4/1	200	162	8.0	0.400	11.8	81.2	2 3/16	Uniform/Skew
	Muscatine/Y14(S)/6/2	250	208	4.8	0.240	16.6	114.1	2	Uniform/Skew
Average	•	333	285	6.4	0.320	22.3	153.8	2.063	
Standar	d Deviation	189	175	2.3	0.113	14.3	98.7	0.108	
Dry	Muscatine/Y14(S)/2/1	860	772	6.0	0.300	61.4	423.4	2	Uniform/No-Skew
-	Muscatine/Y14(S)/6/1	560	494	6.0	0.300	39.3	271.3	2	Uniform/No-Skew
Average	•	710	633	6.0	0.300	50.4	347.4	1.543	
Standar	d Deviation	212	196	0.0	0.000	15.6	107.6	0.957	
Wet	Muscatine/Y14(N)/1/1	420	365	8.4	0.420	29.1	200.3	2	Uniform/Skew
	Muscatine/Y14(N)/2/1	470	411	8.0	0.400	32.7	225.7	2	Uniform/Skew
	Muscatine/Y14(N)/3/1	430	374	8.0	0.400	29.8	205.4	2	Uniform/No-Skew
Average		440	384	8.1	0.407	30.5	210.5	2.000	
Standar	d Deviation	26	24	0.2	0.012	1.9	13.4	0.000	
Dry	Muscatine/Y14(N)/4/1	580	513	8.0	0.400	40.8	281.4	2	Uniform/Skew
	Muscatine/Y14(N)/5/1	670	596	9.2	0.460	47.4	327.1	2	Uniform/No-Skew
	Muscatine/Y14(N)/6/1	400	347	6.8	0.340	27.6	190.2	2	Uniform/No-Skew
Average		550	485	8.0	0.400	38.6	266.2	1.600	
Standar	d Deviation	137	127	1.2	0.060	10.1	69.7	0.894	

		Р			F		St		
	I.D	Ultimate applieed load to fail lbf	Calibrated Load	Flow	¥alue IN		Tensile strength		Remark (Sample State)
								IN	
Wet	Muscatine/G28W/1/1	280	236	6.0	0.300	18.8	129.3	2	Uniform/No-Skew
	Muscatine/G28W/2/1	250	208	8.0	0.400	16.6	114.1	2	Uniform/No-Skew
	Muscatine/G28W/3/1	100	69	7.2	0.360	5.5	38.1	2	Uni/Skew
	Muscatine/G28W/4/1	310	263	9.6	0.480	21.0	144.5	2	Uniform/No-Skew
Avera		235	194	7.7	0.385	15.4	106.5	2.000	
Stand	ard Deviation	93	86	1.5	0.075	6.9	47.3	0.000	
Wet	Muscatine/G28(E)/2/1	210	210	4.0	0.200	16.7	115.1	2	Uniform/Skew
	Muscatine/G28(E)/3/1	185	185	8.0	0.400	15.2	104.6	1 15/16	Uniform/Skew
	Muscatine/G28(E)/5/1	200	200	8.0	0.400	16.4	113.1	1 15/16	Uniform/Skew
	Muscatine/G28(E)/6/1	278	278	6.0	0.300	22.1	152.4	2	Uniform/Skew
Avera	ge	218	218	6.5	0.325	17.6	121.3	1.969	
Stand	ard Deviation	41	41	1.9	0.096	3.1	21.3	0.036	
Wet	Hardin/D35/4/1	650	650	10.0	0.500	51.8	356.9	2	Uniform/No-Skew
	Hardin/D35/5/1	248	248	8.0	0.400	19.7	136.0	2	Non-Uni (L)
	Hardin/D35/6/1	740	741	8.0	0.400	58.9	406.4	2	Uniform/Skew
Avera	ae	546	546	8.7	0.433	43.5	299.7	2.000	
	ard Deviation	262	262	1.2	0.058	20.9	144.0	0.000	
Dry	Hardin/D35/2/1	460	460	12.4	0.620	36.6	252.5	2	Uniform/Skew
,	Hardin/D35/3/1	652	652	11.2	0.560	51.9	358.0	2	Uniform/Skew
Avera		556	556	11.8	0.590	44.3	305.2	1.500	
	ard Deviation	136	136	0.8	0.042	10.8	74.6	1.000	
Wet	Clintone/Z35/3/1	650	650	10.0	0.500	51.8	356.9	2	Uniform/No-Skew
	Clintone/Z35/5/1	248	248	8.0	0.400	19.7	136.0	2	Non-Uni (L)
	Clintone/Z35/6/1	740	741	8.0	0.400	58.9	406.4	2	Uniform/Skew
Avera		546	546	8.7	0.433	43.5	299.7	2.000	
	ard Deviation	262	262	1.2	0.058	20.9	144.0	0.000	
Dry	Clintone/Z35/4/1	460	460	12.4	0.620	36.6	252.5	2	Uniform/Skew
,	Clintone/Z35/4/1	248	248	8.0	0.400	19.7	136.0	2	Non-Uni (L)
	Clintone/Z35/4/1	652	652	11.2	0.560	51.9	358.0	2	Uniform/Skew
Avera		453	453	10.5	0.527	36.1	248.8	1.600	on on over
	ard Deviation	202	202	2.3	0.021	16.1	111.1	0.894	
ocanu		202	202	2.0	0.114	10.1			

		P			F		St		
	I.D	Ultimate applieed load to fail	Calibrated Load		¥alue	Tensile strength		ess	Remark (Sample State)
		lbf	lbf	1/20	IN	psi	KPa	IN	
Wet	Cerro Gordo/B43/2/1	191	191	9.2	0.460	15.7	108.0	1 15/16	Uniform/Skew
	Cerro Gordo/B43/4/1	238	238	12.4	0.620	19.5	134.7	1 15/16	Uniform/Skew
	Cerro Gordo/B43/6/1	195	195	8.8	0.440	17.7	122.1	1 12/16	Uniform/Skew
Avera		208	208	10.1	0.507	17.6	121.6	1.875	
Standa	ard Deviation	26	26	2.0	0.099	1.9	13.3	0.108	
Dry	Cerro Gordo/B43/3/1	785	786	5.2	0.260	62.5	431.1	2	Uniform/No-Skew
	Cerro Gordo/B43/5/1	1024	1025	4.8	0.240	87.0	599.9	1 14/16	Uniform/No-Skew
Avera	ge	905	905	5.0	0.250	74.8	515.5	1.465	
Standa	ard Deviation	169	169	0.3	0.014	17.3	119.4	0.906	
Wet	Cerro Gordo/SS/5/1	350	350	8.0	0.400	28.7	198.2	1 15/16	Uniform/No-Skew
	Cerro Gordo/SS/5/2	330	330	6.0	0.300	26.3	181.0	2	Uniform/Skew
	Cerro Gordo/SS/5/3	325	325	12.0	0.600	26.7	184.0	1 15/16	Uniform/No-Skew
	Cerro Gordo/SS/6/1	358	358	10.0	0.500	30.4	209.5	1 14/16	Uniform/Skew
Avera	ae	341	341	9.0	0.450	28.0	193.2	1.938	
Stand	ard Deviation	16	16	2.6	0.129	1.9	13.2	0.051	
Wet	Tama/V18(B)/2/1	275	275	16.0	0.800	21.9	150.8	2	Uniform/Skew
	Tama/V18(B)/2/2	335	335	8.0	0.400	26.7	183.8	2	Uniform/Skew
	Tama/V18(B)/4/2	300	300	10.0	0.500	24.6	169.8	1 15/16	Uniform/Skew
	Tama/V18(B)/5/1	370	370	12.0	0.600	29.4	203.0	2	Uniform/No-Skew
Avera		320	320	11.5	0.575	25.7	176.8	1.984	
	ard Deviation	41	42	3.4	0.171	3.2	22.1	0.031	
Dry	Tama/V18(B)/1/1	550	550	12.0	0.600	42.5	292.8	2 1/16	Uniform/Skew
	Tama/V18(B)/3/1	405	405	6.0	0.300	32.2	222.2	2	Uniform/No-Skew
	Tama/V18(B)/3/2	422	422	8.0	0.400	33.6	231.6	2	Uniform/Skew
	Tama/V18(B)/4/1	535	535	8.0	0.400	42.6	293.7	2	Uniform/Skew
Avera		478	478	8.5	0.425	37.7	260.1	1.680	
	ard Deviation	75	75	2.5	0.126	5.6	38.5	0.808	
Vet	Boone/198th/2/1	290	290	6.4	0.320	23.8	164.2	1 15/16	Uniform/Skew
	Boone/198th/2/2	140	140	8.0	0.400	11.5	79.1	1 15/16	Uniform/Skew
	Boone/198th/4/2	212	212	10.0	0.500	17.4	119.9	1 15/16	Uniform/Skew
	Boone/198th/5/1	320	320	6.0	0.300	25.5	175.5	2	Uniform/No-Skew
	Boone/198th/6/2	198	198	8.8	0.440	16.8	115.7	1 14/16	Uniform/Skew
	Boone/198th/7/2	260	260	8.0	0.400	21.3	147.1	1 15/16	Uniform/Skew
Average		237	236	7.9	0.393	19.4	133.6	1.938	
	ard Deviation	66	66	1.5	0.074	5.2	35.7	0.040	

		Р			F		St		
	I.D	Ultimate applieed load to fail lbf	Calibrated Load	Flow	Value IN	Tensile psi	strength KPa	Sample Thickn ess N	Remark (Sample State)
Dry	Boone/198th/1/1	235	235	7.2	0.360	18.7	128.8	2	Uniform/Skew
Dig	Boone/198th/1/2	200	235	6.0	0.300	16.4	120.0	1 15/16	Uniform/No-Skew
	Boone/198th/3/1	355	355	4.0	0.200	30.1	207.7	1 14/16	Uniform/Skew
	Boone/198th/4/1	320	320	6.0	0.300	25.5	175.5	2	Uniform/Skew
	Boone/198th/6/1	735	736	4.0	0.200	60.4	416.6	1 15716	Uniform/No-Skew
	Boone/198th/7/1	288	288	4.8	0.200	24.4	168.5	1 14/16	Uniform/Skew
A		356	355	<u>4.0</u> 5.3	0.240	29.3	201.7	1.700	OHIFOHIFSKEW
Avera Stand	ge ard Deviation	194	300		0.267	16.0	110.6	0.673	
									U-XIN OL
Wet	Boone/E52/1/1	299	299	10.4	0.520	23.8	164.0	2	Uniform/No-Skew
	Boone/E52/3/1	405	405	16.0	0.800	32.2	222.2	2	Uniform/Skew
	Boone/E52/4/1	318	318	8.0	0.400	25.3	174.4	2	Uniform/Skew
	Boone/E52/5/1	270	270	11.2	0.560	22.2	152.8	1 15/16	Uniform/Skew
Avera		323	323	11.4	0.570	25.9	178.4	1.984	
	ard Deviation	58	58	3.4	0.168	4.4	30.6	0.031	
Dry	Boone/E52/6/1	690	691	8.4	0.420	56.7	391.1	1 15716	Uniform/Skew
	Boone/E52/7/1	510	510	10.0	0.500	41.9	289.0	1 15716	Uniform/Skew
	Boone/E52/8/1	650	650	10.0	0.500	53.4	368.4	1 15716	Uniform/Skew
Avera		617	617	9.5	0.473	50.7	349.5	1.566	
	ard Deviation	95	95	0.9	0.046	7.8	53.6	0.858	
Wet	Story/S14(SB)/4/1	330	330	16.0	0.800	27.1	186.9	1 15716	Uniform/Skew
	Story/S14(SB)/4/2	73	72	10.0	0.500	8.8	60.6	1 5/16	Non-Uni (H)
Avera	ge	202	201	13.0	0.650	17.9	123.7	1.625	
Stand	ard Deviation	182	182	4.2	0.212	12.9	89.3	0.442	
Wet	Story/S14(NB)/1/1	180	180	14.4	0.720	14.3	98.6	2	Uniform/Skew
	Story/S14(NB)/2/1	152	152	12.0	0.600	12.5	85.9	1 15/16	Uniform/No-Skew
	Story/S14(NB)/5/2	148	148	16.4	0.820	11.7	81.0	2	Uniform/Skew
Avera	ge	160	160	14.3	0.713	12.8	88.5	1.979	
Stand	ard Deviation	17	17	2.2	0.110	1.3	9.1	0.036	
Dry	Story/S14(NB)/3/1	125	125	16.0	0.800	9.9	68.4	2	Uniform/Skew
	Story/S14(NB)/4/1	157	157	12.0	0.600	12.5	85.9	2	Uniform/No-Skew
	Story/S14(NB)/5/1	150	150	8.0	0.400	11.9	82.1	2	Uniform/Skew
Avera		144	144	12.0	0.600	11.4	78.8	1.603	
	ard Deviation	17	17	4.0	0.200	1.3	9.2	0.876	

		Р			F		St		
	I.D	Ultimate applieed load to fail lbf	Calibrated Load	Flow	¥alue IN		Tensile strength		Remark (Sample State)
	D.J. ITIGHH							IN	
Wet	Butler/T16/1/1	180	180	12.8	0.640	14.3	98.6	2	Uniform/Skew
	Butler/T16/3/1	350	350	12.4	0.620	27.8	192.0	2	Uniform/Skew
	Butler/T16/5/1	220	220	16.0	0.800	17.5	120.6	2	Uniform/No-Skew
Avera		250	250	13.7	0.687	19.9	137.1	2.000	
	ard Deviation	89	89	2.0	0.099	7.1	48.8	0.000	
Dry	Butler/T16/2/1	380	380	12.8	0.640	29.3	202.2	2 1/16	Uniform/Skew
	Butler/T16/4/1	367	367	16.0	0.800	28.3	195.3	2 1/16	Uniform/Skew
	Butler/T16/6/1	522	522	10.4	0.520	41.6	286.5	2	Uniform/No-Skew
Avera		423	423	13.1	0.653	33.1	228.0	1.625	
	ard Deviation	86	86	2.8	0.140	7.4	50.8	0.909	
Wet	Calhoun/IA175/2/1	259	259	8.0	0.400	20.6	142.0	2	Uniform/No-Skew
	Calhoun/IA175/4/1	210	210	12.0	0.600	16.7	115.1	2	Uniform/No-Skew
	Calhoun/IA175/5/1	175	175	7.6	0.380	13.9	95.8	2	Uniform/No-Skew
Avera	ige	215	214	9.2	0.460	17.1	117.6	2.000	
Stand	ard Deviation	42	42	2.4	0.122	3.4	23.2	0.000	
Wet	Carroll/N58/1/1	408	408	14.8	0.740	32.5	223.9	2	Uniform/No-Skew
	Carroll/N58/4/1	110	110	13.2	0.660	9.0	62.0	1 15/16	Uniform/No-Skew
	Carroll/N58/6/1	104	104	16.0	0.800	14.0	96.5	2	Uniform/No-Skew
Avera	ige	207	207	14.7	0.733	18.5	127.5	1.979	
Stand	ard Deviation	174	174	1.4	0.070	12.4	85.2	0.036	
Dry	Carroll/N58/2/1	214	214	14.0	0.700	17.0	117.3	2	Uniform/No-Skew
	Carroll/N58/3/1	150	150	14.0	0.700	11.9	82.1	2	Uniform/No-Skew
	Carroll/N58/6/2	160	160	16.0	0.800	13.1	90.4	1 15/16	Uniform/No-Skew
Avera	ige	175	174	14.7	0.733	14.0	96.6	1.591	
	ard Deviation	34	34	1.2	0.058	2.7	18.4	0.869	
Wet	Carroll/N of Breda /2/1	230	230	4.8	0.240	18.3	126.1	2	Uniform/Skew
	Carroll/N of Breda /3/1	145	145	7.2	0.360	14.7	101.6	1 9/16	Non-Uni (H)
	Carroll/N of Breda /5/1	170	170	16.0	0.800	8.0	55.2	1 15/16	Uniform/Skew
	Carroll/N of Breda /6/1	310	310	12.4	0.620	8.0	55.2	2 7/16	Non-Uni (H)
Avera		214	213	10.1	0.505	12.3	84.5	1.984	
	ard Deviation	73	74	5.1	0.253	5	35	0.359	

		P			F		St		
	I.D	Ultimate applieed load to fail	Calibrated Load	Flow	¥alue	Tensile	strength	Sample Thickn ess	Remark (Sample State)
		lbf	lbf	1/20	IN	psi	KPa	IN	
Dry	Green/IA144/1/1	400	400	7.2	0.360	31.8	219.5	2	Uniform/No-Skew
	Green/IA144/2/1	325	325	10.0	0.500	25.9	178.3	2	Uniform/No-Skew
Avera	ige	363	362	8.6	0.430	20.8	198.9	1.514	
Stand	lard Deviation	53	53	2.0	0.099	4.2	29.1	0.985	
Wet	Guthrie/IA4/2/1	310	310	7.6	0.380	26.3	181.4	1 14/16	Non-Uni (H)
	Guthrie/IA4/6/1	225	225	8.4	0.420	22.0	151.8	1 10/16	Non-Uni (H)
Avera	ige	268	267	8.0	0.400	24.2	166.6	1.750	
Stand	ard Deviation	60	60	0.6	0.028	3.0	20.9	0.177	
Wet	Tama/V18(A)/1/1	410	410	9.6	0.480	32.6	225.0	2	Uniform/Skew
	Tama/V18(A)/2/1	190	190	8.0	0.400	15.1	104.1	2	Uniform/No-Skew
	Tama/V18(A)/3/1	245	245	9.2	0.460	19.5	134.3	2	Uniform/Skew
Avera	ige	282	282	8.9	0.447	22.4	154.5	2.000	
Stand	ard Deviation	114	115	0.8	0.042	9.1	62.9	0.000	
Dry	Tama/V18(A)/1/2	550	550	6.8	0.340	43.8	301.9	2	Uniform/Skew
-	Tama/V18(A)/3/1	437	437	10.8	0.540	34.8	239.8	2	Uniform/Skew
	Tama/V18(A)/4/1	470	470	8.0	0.400	37.4	258.0	2	Uniform/Skew
Avera	ige	486	486	8.5	0.427	38.7	266.6	1.600	
Stand	lard Deviation	58	58	2.1	0.103	4.6	31.9	0.894	
Wet	Harrison/144/3/1	315	315	12.8	0.640	25.1	172.8	2	Uniform/No-Skew
	Harrison/I44/4/1	375	375	12.8	0.640	29.8	205.8	2	Uniform/No-Skew
	Harrison/I44/6/1	380	380	14.0	0.700	31.2	215.2	1 15/16	Uniform/Skew
Avera	ige	357	357	13.2	0.660	28.7	197.9	1.979	
Stand	ard Deviation	36	36	0.7	0.035	3.2	22.3	0.036	
Dry	Harrison/I44/1/1	328	328	16.0	0.800	26.1	179.9	2	Uniform/No-Skew
	Harrison/I44/2/1	440	440	14.0	0.700	36.2	249.3	1 15716	Uniform/Skew
	Harrison/I44/1/1	350	350	14.0	0.700	27.8	192.0	2	Uniform/No-Skew
Avera	ige	373	373	14.7	0.733	30.0	207.1	1.591	
Stand	ard Deviation	59	59	1.2	0.058	5.4	37.0	0.869	

		Р			F		St		
I.D		Ultimate applieed load to fail	Calibrated Load	Flow	Yalue		strength	Sample Thickn ess	Remark (Sample State)
		lbf	lbf	1/20	IN	psi	KPa	IN	
Wet	Winnebago/R34A /1/1	360	360	14.4	0.720	28.6	197.5	2	Non-Uni (H)
	Winnebago/R34A /4/1	250	250	14.8	0.740	24.5	168.7	1 10/16	Non-Uni (H)
Avera	ge	305	305	14.6	0.730	26.6	183.1	1.813	
Stand	ard Deviation	78	78	0	0.014	3	20	0.265	
Wet	Winnebago/R34B73/1	285	285	10.4	0.520	23.4	161.3	1 15/16	Uniform/Skew
	Winnebago/R34B /6/1	231	231	8.0	0.400	18.4	126.6	2	Uniform/No-Skew
Avera		258	258	9.2	0.460	20.9	144.0	1.969	
Stand	ard Deviation	38	38	2	0.085	4	25	0.044	
Wet	Winebagol/R60/1/1	170	170	10.4	0.520	13.5	93.1	2	Uniform/Skew
	Winebagol/R60/2/1	315	315	6.0	0.300	25.1	172.8	2	Uniform/Skew
	Winebagol/R60/4/1	260	260	12.0	0.600	20.7	142.5	2	Uniform/Skew
Avera	ge	248	248	9.5	0.473	19.7	136.1	2.000	
Stand	ard Deviation	73	73	3.1	0.155	5.8	40.2	0.000	
Wet	Delaware/US20/2/1	230	230	16.0	0.800	18.3	126.1	2	Uniform/No-Skew
	Delaware/US20/4/1	175	175	10.0	0.500	13.9	95.8	2	Uniform/Skew
	Delaware/US20/6/1	210	210	14.8	0.740	16.7	115.1	2	Uniform/No-Skew
Avera	ge	205	205	13.6	0.680	16.3	112.3	2.000	
Stand	ard Deviation	28	28	3.2	0.159	2.2	15.3	0.000	
Dry	Delaware/US20/1/2	250	250	9.6	0.480	19.9	137.1	2	Uniform/No-Skew
	Delaware/US20/2/2	240	240	14.0	0.700	19.1	131.6	2	Uniform/No-Skew
	Delaware/US20/3/1	270	270	12.0	0.600	21.5	148.0	2	Uniform/No-Skew
Avera	ge	253	253	11.9	0.593	20.1	138.9	1.600	
Stand	ard Deviation	15	15	2.2	0.110	1.2	8.4	0.894	
Wet	Green/IA144/2/2	154	154	14.4	0.720	12.2	84.3	2	Uniform/No-Skew
	Green/IA144/2/3	250	250	12.0	0.600	19.3	132.9	2 1/16	Uniform/Skew
	Green/IA144/6/1	270	270	13.6	0.680	21.5	148.0	2	Uniform/No-Skew
Avera		225	224	13.3	0.667	17.7	121.7	2.021	
Stand	ard Deviation	62	62	1.2	0.061	4.8	33.3	0.036	

County	Road	Test 1	Test 2	Test 3	Average
Boone	E-52	6	10	6	7.3
Boone	198th	30	32	26	29.3
Butler	T-16	10	6	13	9.7
Calhoun	IA-175	4	5	5	4.7
Carroll	N-58	20	22	26	22.7
Carroll	N of Breda	0	0	0	0.0
Cerro Gordo	S.S.	12	18	20	16.7
Cerro Gordo	B-43	4	9	5	6.0
Clinton	Z-30	5	5	4	4.7
Clinton	E-50	4	7	3	4.7
Delaware	US-20	16	20	12	16.0
Greene	IA-144	18	14	15	15.7
Guthrie	IA-4	4	5	0	3.0
Hardin	D-35	14	15	15	14.7
Harrison	IA-44	30	31	30	30.3
Jackson	US-61	15	10	20	15.0
/Iontgomery	IA-48	25	28	25	26.0
Muscatine	F-70	13	12	12	12.3
Muscatine	G-28W	5	3	4	4.0
Muscatine	G-28E	10	6	5	7.0
Muscatine	Y-14N	9	10	13	10.7
Muscatine	Y-14S	8	5	5	6.0
Story	S-14 SB	20	25	26	23.7
Story	S-14 NB	20	20	21	20.3
Tama	V-18a	5	5	4	4.7
Tama	V-18b	25	15	20	20.0
Tama	E-66	24	20	26	23.3
Winnebago	R-34a	3	6	1	3.3
Winnebago	R-34b	0	0	0	0.0
Winnebago	R-60	5	2	0	2.3

Table C.4. Lab testing data, penetration

	-12	2 C	-18	8 C	-24	4 C
	S (Mpa)	m-value	S (Mpa)	m-value	S (Mpa)	m-value
Boone 198th	87	0.365	204	0.285	405	0.240
Boone E52	226	0.245	410	0.199	659	0.151
Butler T16	253	0.285	442	0.217	772	0.175
Calhoun IA 175	224	0.260	429	0.209	720	0.172
Carroll N58	89	0.404	229	0.319	480	0.244
Carroll N of Breda	391	0.229	681	0.178	1040	0.163
CC B43	269	0.258	603	0.199	1010	0.150
CC SS	198	0.308	391	0.231	733	0.199
Clinton E50	370	0.238	678	0.179	1000	0.160
Clinton Z30	349	0.245	655	0.211	990	0.175
Delaware US20	138	0.320	318	0.266	595	0.218
Green IA144	205	0.318	436	0.237	773	0.191
Guthrie IA4	404	0.212	651	0.184	1010	0.161
Hardin D35	285	0.234	494	0.205	827	0.172
Harrison IA144	506	0.196	285	0.270	136	0.323
Jackson US61	331	0.231	583	0.197	619	0.157
Montgomery IA48	155	0.300	319	0.252	586	0.206
Muscatine F70	178	0.325	404	0.241	707	0.200
Muscatine G28E	255	0.266	509	0.214	872	0.170
Muscatine G28W	275	0.254	555	0.204	939	0.156
Muscatine Y14N	256	0.248	464	0.211	770	0.183
Muscatine Y14S	262	0.209	602	0.205	908	0.167
Story S14 NB	206	0.313	434	0.237	750	0.183
Story S14 SB	261	0.266	473	0.209	802	0.151
Tama V18A	150	0.350	358	0.274	711	0.205
Tama V18b	163	0.323	338	0.261	655	0.256
Winnebago R34A	384	0.223	677	0.184	1010	0.166
Winnebago R34B	511	0.186	813	0.174	1080	0.139
WinnebagoR60	586	0.184	962	0.163	1290	0.123

Table C.5. Lab testing data, S(t) and m-value

APPENDIX D. AGGREGATE GRADATIONS

Boone 198th

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing		
-		0.45 power	Ignition Oven	Extraction	
1"	25	4.257	100.0		
3/4"	19	3.762	100.0		
1/2"	12.5	3.116	99.1		
3/8"	9.5	2.754	97.4		
#4	4.75	2.016	83.5		
#8	2.36	1.472	62.9		
#16	1.18	1.077	44.1		
#30	0.6	0.795	26.3		
#50	0.3	0.582	12.1		
#100	0.15	0.426	5.8		
#200	0.075	0.312	3.0		
Pan	0	0.000	0.0		
Aggregate Type:	Gravel				

	Aggregate Grada	ation			
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing		
		0.45 power	Ignition Oven	Extraction	
1"	25	4.257	100.0		
3/4"	19	3.762	100.0		
1/2"	12.5	3.116	95.4		
3/8"	9.5	2.754	89.6		
#4	4.75	2.016	67.0		
#8	2.36	1.472	50.4		
#16	1.18	1.077	37.3		
#30	0.6	0.795	23.9		
#50	0.3	0.582	12.6		
#100	0.15	0.426	6.8		
#200	0.075	0.312	2.8		
Pan	0	0.000	0.0		
Aggregate Type:	Gravel				

Boone E52

	Aggregate Grada	tion			
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing		
		0.45 power	Ignition Oven	Extraction	
1"	25	4.257	100.0		
3/4"	19	3.762	100.0		
1/2"	12.5	3.116	96.6		
3/8"	9.5	2.754	92.2		
#4	4.75	2.016	76.2		
#8	2.36	1.472	60.7		
#16	1.18	1.077	46.9		
#30	0.6	0.795	30.7		
#50	0.3	0.582	13.0		
#100	0.15	0.426	6.5		
#200	0.075	0.312	2.5		
Pan	0	0.000	0.0		

Butler T16

Calhoun IA175

	Aggregate Gradat	tion		
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.7	
1/2"	12.5	3.116	95.0	
3/8"	9.5	2.754	90.4	
#4	4.75	2.016	73.1	
#8	2.36	1.472	55.5	
#16	1.18	1.077	41.3	
#30	0.6	0.795	27.6	
#50	0.3	0.582	14.7	
#100	0.15	0.426	7.6	
#200	0.075	0.312	3.4	
Pan	0	0.000	0.0	

Carroll N58

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	nt Passing	
		0.45 power	Ignition Oven	Extraction	
1"	25	4.257	100.0		
3/4"	19	3.762	100.0		
1/2"	12.5	3.116	96.9		
3/8"	9.5	2.754	91.9		
#4	4.75	2.016	74.4		
#8	2.36	1.472	58.4		
#16	1.18	1.077	45.6		
#30	0.6	0.795	32.2		
#50	0.3	0.582	16.0		
#100	0.15	0.426	6.7		
#200	0.075	0.312	2.6		
Pan	0	0.000	0.0		

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	95.9	
3/8"	9.5	2.754	90.7	
#4	4.75	2.016	73.4	
#8	2.36	1.472	56.0	
#16	1.18	1.077	42.3	
#30	0.6	0.795	27.9	
#50	0.3	0.582	13.8	
#100	0.15	0.426	6.7	
#200	0.075	0.312	2.9	
Pan	0	0.000	0.0	
Aggregate Type:	Gravel			

Carroll N. of Brenda

Cerro Gordo B43

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.7	
1/2"	12.5	3.116	95.0	
3/8"	9.5	2.754	88.9	
#4	4.75	2.016	50.8	
#8	2.36	1.472	43.6	
#16	1.18	1.077	26.2	
#30	0.6	0.795	12.8	
#50	0.3	0.582	4.3	
#100	0.15	0.426	1.4	
#200	0.075	0.312	0.6	
Pan	0	0.000	0.0	

Cerro Gordo SS

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	95.8	
3/8"	9.5	2.754	90.4	
#4	4.75	2.016	74.1	
#8	2.36	1.472	59.9	
#16	1.18	1.077	46.9	
#30	0.6	0.795	31.9	
#50	0.3	0.582	14.4	
#100	0.15	0.426	6.7	
#200	0.075	0.312	2.9	
Pan	0	0.000	0.0	

А				
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	96.4	
3/8"	9.5	2.754	93.2	
#4	4.75	2.016	74.1	
#8	2.36	1.472	50.7	
#16	1.18	1.077	37.3	
#30	0.6	0.795	24.6	
#50	0.3	0.582	12.1	
#100	0.15	0.426	5.7	
#200	0.075	0.312	1.8	
Pan	0	0.000	0.0	

A				
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	96.9	
3/8"	9.5	2.754	93.6	
#4	4.75	2.016	69.9	
#8	2.36	1.472	52.5	
#16	1.18	1.077	41.1	
#30	0.6	0.795	24.5	
#50	0.3	0.582	10.8	
#100	0.15	0.426	5.6	
#200	0.075	0.312	2.0	
Pan	0	0.000	0.0	

Clinton Z30

Delaware US20

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to Percent		Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	97.4	
3/8"	9.5	2.754	91.7	
#4	4.75	2.016	69.9	
#8	2.36	1.472	52.4	
#16	1.18	1.077	41.7	
#30	0.6	0.795	30.1	
#50	0.3	0.582	16.8	
#100	0.15	0.426	9.5	
#200	0.075	0.312	4.0	
Pan	0	0.000	0.0	

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.6	
1/2"	12.5	3.116	98.1	
3/8"	9.5	2.754	93.9	
#4	4.75	2.016	72.1	
#8	2.36	1.472	53.8	
#16	1.18	1.077	39.3	
#30	0.6	0.795	25.8	
#50	0.3	0.582	12.0	
#100	0.15	0.426	5.9	
#200	0.075	0.312	2.3	
Pan	0	0.000	0.0	

Greene IA144

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	96.8	
3/8"	9.5	2.754	95.0	
#4	4.75	2.016	79.3	
#8	2.36	1.472	63.5	
#16	1.18	1.077	47.8	
#30	0.6	0.795	28.5	
#50	0.3	0.582	11.3	
#100	0.15	0.426	4.7	
#200	0.075	0.312	2.8	
Pan	0	0.000	0.0	
Aggregate Type:	Gravel			

Guthrie IA4

Hardin D35

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent l	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	95.5	
3/8"	9.5	2.754	89.4	
#4	4.75	2.016	72.3	
#8	2.36	1.472	58.3	
#16	1.18	1.077	43.5	
#30	0.6	0.795	22.0	
#50	0.3	0.582	9.1	
#100	0.15	0.426	3.2	
#200	0.075	0.312	1.1	
Pan	0	0.000	0.0	
Aggregate Type:	Gravel			

Harrison IA144

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	98.5	
3/8"	9.5	2.754	95.6	
#4	4.75	2.016	77.6	
#8	2.36	1.472	60.5	
#16	1.18	1.077	47.2	
#30	0.6	0.795	29.3	
#50	0.3	0.582	13.4	
#100	0.15	0.426	6.9	
#200	0.075	0.312	3.0	
Pan	0	0.000	0.0	

Aggregate Gradation				
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
			Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.7	
1/2"	12.5	3.116	97.6	
3/8"	9.5	2.754	93.6	
#4	4.75	2.016	73.2	
#8	2.36	1.472	58.6	
#16	1.18	1.077	43.0	
#30	0.6	0.795	23.4	
#50	0.3	0.582	10.7	
#100	0.15	0.426	3.6	
#200	0.075	0.312	1.0	
Pan	0	0.000	0.0	

Jackson US61

Montgomery l	[A48
--------------	------

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.4	
1/2"	12.5	3.116	94.8	
3/8"	9.5	2.754	90.5	
#4	4.75	2.016	72.1	
#8	2.36	1.472	55.8	
#16	1.18	1.077	43.4	
#30	0.6	0.795	31.7	
#50	0.3	0.582	16.8	
#100	0.15	0.426	9.1	
#200	0.075	0.312	5.6	
Pan	0	0.000	0.0	

Muscatine G28E

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	98.4	
3/8"	9.5	2.754	93.8	
#4	4.75	2.016	70.0	
#8	2.36	1.472	56.5	
#16	1.18	1.077	27.7	
#30	0.6	0.795	13.3	
#50	0.3	0.582	4.4	
#100	0.15	0.426	1.6	
#200	0.075	0.312	0.6	
Pan	0	0.000	0.0	

Muscatine G28W

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.8	
1/2"	12.5	3.116	96.2	
3/8"	9.5	2.754	90.9	
#4	4.75	2.016	73.8	
#8	2.36	1.472	59.0	
#16	1.18	1.077	38.6	
#30	0.6	0.795	18.1	
#50	0.3	0.582	6.3	
#100	0.15	0.426	2.3	
#200	0.075	0.312	0.8	
Pan	0	0.000	0.0	

Muscatine Y14N

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	98.3	
3/8"	9.5	2.754	95.0	
#4	4.75	2.016	76.5	
#8	2.36	1.472	57.2	
#16	1.18	1.077	36.9	
#30	0.6	0.795	21.4	
#50	0.3	0.582	7.2	
#100	0.15	0.426	2.6	
#200	0.075	0.312	0.9	
Pan	0	0.000	0.0	

Muscatine Y	14S
muscame i	

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	99.8	
1/2"	12.5	3.116	98.5	
3/8"	9.5	2.754	95.7	
#4	4.75	2.016	78.3	
#8	2.36	1.472	59.6	
#16	1.18	1.077	32.9	
#30	0.6	0.795	16.9	
#50	0.3	0.582	6.4	
#100	0.15	0.426	2.2	
#200	0.075	0.312	0.7	
Pan	0	0.000	0.0	

Sieve Size (Customary)	ary) Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	95.7	
3/8"	9.5	2.754	90.3	
#4	4.75	2.016	74.7	
#8	2.36	1.472	60.5	
#16	1.18	1.077	47.4	
#30	0.6	0.795	32.3	
#50	0.3	0.582	14.7	
#100	0.15	0.426	7.0	
#200	0.075	0.312	3.0	
Pan	0	0.000	0.0	

Story S14 NB

Tama E66

Ag				
Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
	(11111)	0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	94.4	
3/8"	9.5	2.754	88.2	
#4	4.75	2.016	65.4	
#8	2.36	1.472	47.2	
#16	1.18	1.077	37.0	
#30	0.6	0.795	25.7	
#50	0.3	0.582	12.9	
#100	0.15	0.426	7.3	
#200	0.075	0.312	3.0	
Pan	0	0.000	0.0	

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	96.6	
3/8"	9.5	2.754	92.6	
#4	4.75	2.016	77.2	
#8	2.36	1.472	63.5	
#16	1.18	1.077	50.0	
#30	0.6	0.795	35.5	
#50	0.3	0.582	14.7	
#100	0.15	0.426	5.5	
#200	0.075	0.312	1.8	
Pan	0	0.000	0.0	

Tama V-18a

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to	Percent Passing	
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	94.9	
3/8"	9.5	2.754	91.1	
#4	4.75	2.016	75.6	
#8	2.36	1.472	62.7	
#16	1.18	1.077	51.2	
#30	0.6	0.795	36.9	
#50	0.3	0.582	17.1	
#100	0.15	0.426	6.3	
#200	0.075	0.312	1.8	
Pan	0	0.000	0.0	

Tama V-18b

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent	Passing
		0.45 power	Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	98.7	
1/2"	12.5	3.116	94.0	
3/8"	9.5	2.754	89.7	
#4	4.75	2.016	77.0	
#8	2.36	1.472	62.6	
#16	1.18	1.077	50.3	
#30	0.6	0.795	34.0	
#50	0.3	0.582	15.8	
#100	0.15	0.426	6.4	
#200	0.075	0.312	2.5	
Pan	0	0.000	0.0	

Winnebago R-34a

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
			Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	98.4	
3/8"	9.5	2.754	94.2	
#4	4.75	2.016	85.5	
#8	2.36	1.472	72.5	
#16	1.18	1.077	58.7	
#30	0.6	0.795	40.4	
#50	0.3	0.582	18.0	
#100	0.15	0.426	7.4	
#200	0.075	0.312	3.3	
Pan	0	0.000	0.0	

Winnebago R-34b

Winnebago R-60

Sieve Size (Customary)	Sieve Size (mm)	Sieve Size to 0.45 power	Percent Passing	
			Ignition Oven	Extraction
1"	25	4.257	100.0	
3/4"	19	3.762	100.0	
1/2"	12.5	3.116	97.3	
3/8"	9.5	2.754	94.2	
#4	4.75	2.016	82.6	
#8	2.36	1.472	68.6	
#16	1.18	1.077	54.6	
#30	0.6	0.795	38.3	
#50	0.3	0.582	18.7	
#100	0.15	0.426	8.4	
#200	0.075	0.312	3.8	
Pan	0	0.000	0.0	

APPENDIX E. FALLING WEIGHT DEFLECTOMETER RAW DATA

ΜЗ Date-Time: 12-13-2004 8:36: 9 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Boone 198th Temp: 10 Operator: bad Comments: 1 1 0.000 1 9.14 14.12 12.74 11.24 9.39 7.79 5.34 3.51 2.57 10.93 21.2 GPS Position: Latitude = Longitude = Note: 2 1 105.000 1 8.81 13.35 12.39 11.15 9.48 7.96 5.44 3.57 2.43 10.84 20.9 GPS Position: Latitude = Longitude = Note: 3 1 211.000 1 9.35 15.91 14.26 12.30 9.94 7.90 5.04 3.16 2.37 11.82 20.9 GPS Position: Latitude = Longitude = Note: 4 1 304.000 1 9.42 12.68 11.75 10.26 8.39 6.75 4.38 2.81 2.15 9.45 21.2 GPS Position: Latitude = Longitude = Note: 5 1 402.000 1 9.27 15.28 14.84 12.82 10.26 8.03 5.00 3.09 2.44 11.74 21.2 GPS Position: Latitude = Longitude = Note: 6 1 503.000 1 9.20 13.40 13.30 11.83 9.93 8.18 5.50 3.53 2.64 11.41 21.2 GPS Position: Latitude = Longitude = Note: 7 1 603.000 1 9.45 14.62 13.19 11.56 9.42 7.50 4.68 2.81 2.22 11.14 22.3 GPS Position: Latitude = Longitude = Note: 8 1 752.000 1 8.59 18.47 16.23 14.07 11.41 9.18 5.92 3.73 2.86 14.05 22.0 GPS Position: Latitude = Longitude = Note: 9 1 813.000 1 9.63 16.59 15.14 13.35 10.93 8.84 5.88 3.82 2.62 13.18 23.4 GPS Position: Latitude = Longitude = Note: 10 1 917.000 1 9.82 15.26 13.52 11.51 9.07 7.06 4.43 2.84 1.96 12.88 21.6 GPS Position: Latitude = Longitude = Note: 11 1 1004.000 1 9.71 14.67 13.53 11.77 9.51 7.55 4.85 3.14 2.20 10.71 22.0 GPS Position: Latitude = Longitude = Note: 12 1 1108.000 1 9.48 26.65 24.21 19.85 14.85 10.91 6.14 3.67 2.56 17.62 23.4 GPS Position: Latitude = Longitude = Note 13 1 1205.000 1 9.66 13.68 12.59 11.03 9.06 7.35 4.83 3.15 2.27 10.32 23.1 GPS Position: Latitude = Longitude = Note: 14 1 1307.000 1 9.16 14.22 12.86 11.02 8.79 6.92 4.41 2.85 2.52 10.23 22.0 GPS Position: Latitude = Longitude = Note: 15 1 1404.000 1 9.51 12.43 11.55 10.16 8.34 6.77 4.60 3.06 2.28 9.37 23.4 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.56 17.07 15.70 13.55 10.80 8.38 4.99 2.94 2.09 12.36 24.5 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 9:35:14 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Boone E52 Temp: 10 Operator: bad Comments: 1 1 0.000 1 10.12 14.08 12.87 11.54 9.87 8.30 5.84 4.02 2.80 11.74 730.6 GPS Position: Latitude = Longitude = Note: 2 1 104.000 1 9.80 22.37 21.78 19.24 15.94 13.01 8.40 3.16 2.63 15.95 729.1 GPS Position: Latitude = Longitude = Note: 3 1 201.000 1 10.11 18.57 18.08 16.15 13.74 11.51 8.28 4.70 2.36 14.35 731.7 GPS Position: Latitude = Longitude = Note: 4 1 305.000 1 10.15 17.74 16.82 14.86 12.26 9.90 6.44 4.11 2.83 13.26 733.9 GPS Position: Latitude = Longitude = Note: 5 1 402.000 1 10.15 17.02 16.08 14.13 11.74 9.60 6.47 4.28 3.00 12.91 735.4 GPS Position: Latitude = Longitude = Note: 6 1 507.000 1 10.18 14.37 13.54 12.09 10.19 8.48 5.83 3.89 2.68 11.09 735.4 GPS Position: Latitude = Longitude = Note: 7 1 616.000 1 10.21 16.64 15.69 13.94 11.66 9.60 6.47 4.28 3.13 12.98 735.0 GPS Position: Latitude = Longitude = Note: 8 1 705.000 1 10.24 17.36 15.65 13.75 11.33 9.18 6.03 3.89 2.75 13.51 737.5 GPS Position: Latitude = Longitude = Note: 9 1 806.000 1 10.16 16.57 15.58 13.76 11.53 9.51 6.40 4.22 2.95 12.99 738.6 GPS Position: Latitude = Longitude = Note: 10 1 913.000 1 10.29 16.31 15.09 13.47 11.40 9.44 6.45 4.38 3.13 13.19 739.7 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 10.33 13.75 12.90 11.72 10.13 8.61 6.15 4.33 3.06 11.35 740.5 GPS Position: Latitude = Longitude = Note: 12 1 1112.000 1 10.33 12.49 11.77 10.72 9.29 7.96 5.84 4.20 3.03 10.48 740.1 GPS Position: Latitude = Longitude = Note 13 1 1207.000 1 10.27 13.95 13.42 12.13 10.41 8.77 6.22 4.33 3.12 11.09 739.7 GPS Position: Latitude = Longitude = Note: 14 1 1430.000 1 10.36 15.75 14.77 13.41 11.56 9.76 6.94 4.75 3.32 12.88 741.2 GPS Position: Latitude = Longitude = Note: 15 1 1434.000 1 10.23 16.30 14.57 13.05 11.15 9.37 6.57 4.46 3.06 14.87 739.7 GPS Position: Latitude = Longitude = Note: 16 1 1505.000 1 10.41 14.74 13.58 12.04 10.16 8.39 5.67 3.80 2.56 11.92 739.7 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 3-30-2005 13:13:15 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Butler T16 Temp: 56 Operator: Colton/Denekas Comments: 1 1 0.000 1 9.20 16.67 13.55 11.37 8.93 6.99 4.56 3.07 2.36 11.33 64.8 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 8.69 17.85 15.86 13.55 10.73 8.42 5.32 3.38 2.46 12.41 64.1 GPS Position: Latitude = Longitude = Note: 3 1 201.000 1 8.90 23.78 20.69 17.32 13.52 10.42 6.26 3.76 2.60 16.43 63.7 GPS Position: Latitude = Longitude = Note: 4 1 300.000 1 8.77 25.02 21.11 17.71 13.82 10.80 6.65 4.10 2.78 17.44 63.7 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 8.62 25.11 21.80 18.24 14.33 11.27 7.08 4.36 2.90 16.92 62.3 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 502.000 \ 1 \ 8.75 \ 21.10 \ 18.36 \ 15.73 \ 12.67 \ 10.15 \ 6.56 \ 4.12 \ 2.82 \ 15.38 \ 62.6$ GPS Position: Latitude = Longitude = Note: 7 1 600.000 1 8.71 21.17 20.11 18.20 15.82 13.72 9.08 4.37 3.33 15.88 61.9 GPS Position: Latitude = Longitude = Note: 8 1 703.000 1 9.15 14.70 13.70 12.33 10.47 8.79 6.30 4.41 3.21 11.64 63.0 GPS Position: Latitude = Longitude = Note: 9 1 800.000 1 9.10 15.36 13.69 12.17 10.40 8.83 6.33 4.36 3.12 11.85 62.6 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 8.74 27.80 23.97 20.63 16.48 13.07 8.00 4.87 3.24 19.54 62.6 GPS Position: Latitude = Longitude = Note: 11 1 1002.000 1 8.95 24.88 20.74 17.51 13.79 10.80 6.72 4.13 2.84 17.39 63.0 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 9.05 23.04 19.45 16.37 12.76 9.79 5.91 3.55 2.38 15.83 62.3 GPS Position: Latitude = Longitude = Note. 13 1 1200.000 1 8.67 21.12 18.13 15.35 11.95 9.16 5.59 3.38 2.42 14.56 61.5 GPS Position: Latitude = Longitude = Note: 14 1 1302.000 1 8.79 26.37 22.79 18.88 14.54 11.07 6.45 3.72 2.46 18.25 62.3 GPS Position: Latitude = Longitude = Note: 15 1 1404.000 1 8.75 25.34 22.07 18.57 14.73 11.58 7.16 4.25 2.87 17.72 63.0 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 8.50 27.92 23.62 20.28 15.74 12.20 7.46 4.48 3.05 18.66 63.0 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-15-2004 10:46:46 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Calhoun IA175 Temp: 33 Operator: COLTON / DENEKAS Comments: IA4/IA175 EASTBOUND 1 1 0.000 1 9.16 4.01 3.87 3.65 3.38 3.13 2.64 2.14 1.74 3.61 43.6 GPS Position: Latitude = Longitude = Note: 2 1 122.000 1 9.32 4.13 3.97 3.72 3.45 3.20 2.70 2.19 1.74 3.63 44.7 GPS Position: Latitude = Longitude = Note: 3 1 206.000 1 9.21 4.16 4.05 3.82 3.58 3.33 2.89 2.41 1.96 3.73 45.0 GPS Position: Latitude = Longitude = Note: 4 1 307.000 1 9.34 4.02 3.90 3.72 3.50 3.29 2.87 2.38 1.97 3.67 46.5 GPS Position: Latitude = Longitude = Note: 5 1 399.000 1 9.41 4.52 4.37 4.13 3.87 3.62 3.10 2.57 2.10 4.13 47.2 GPS Position: Latitude = Longitude = Note: 6 1 501.000 1 9.26 4.19 4.02 3.78 3.52 3.26 2.76 2.25 1.81 3.71 47.6 GPS Position: Latitude = Longitude = Note: 7 1 602.000 1 9.04 4.33 4.16 3.93 3.65 3.40 2.88 2.34 1.89 3.86 46.9 GPS Position: Latitude = Longitude = Note: 8 1 700.000 1 9.22 4.16 4.06 3.85 3.62 3.38 2.93 2.42 2.01 3.77 48.7 GPS Position: Latitude = Longitude = Note: 9 1 801.000 1 9.07 4.33 4.22 4.03 3.80 3.60 3.20 2.75 2.36 3.97 49.8 GPS Position: Latitude = Longitude = Note: 10 1 900.000 1 9.11 4.16 4.11 3.95 3.75 3.59 3.25 2.85 2.51 3.87 49.8 GPS Position: Latitude = Longitude = Note: 11 1 999.000 1 9.16 4.09 4.02 3.84 3.63 3.47 3.12 2.71 2.44 3.78 49.8 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 9.21 4.57 4.47 4.26 4.01 3.82 3.39 2.94 2.52 4.15 49.8 GPS Position: Latitude = Longitude = Note. 13 1 1201.000 1 9.05 4.40 4.26 4.07 3.87 3.71 3.37 2.96 2.65 4.05 50.5 GPS Position: Latitude = Longitude = Note: 14 1 1314.000 1 9.12 4.02 3.90 3.71 3.47 3.25 2.83 2.38 1.98 3.68 49.4 GPS Position: Latitude = Longitude = Note: 15 1 1399.000 1 9.05 4.70 4.52 4.26 3.98 3.70 3.11 2.52 1.98 4.09 49.4 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.26 4.37 4.22 3.99 3.72 3.46 2.96 2.42 1.99 3.94 50.5 GPS Position: Latitude = Longitude = Note:

Date-Time: 3-31-2005 8:17:17 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Carroll N58 Temp: 41 Operator: Colto/Stephes Comments: 1 1 0.000 1 9.07 4.83 4.66 4.29 3.84 3.39 2.64 2.00 1.50 4.06 48.7 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.09 7.28 7.13 6.66 6.09 5.47 4.40 3.39 2.56 6.31 50.5 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note: 3 1 201.000 1 8.92 9.43 9.17 8.57 7.77 6.91 5.45 4.11 3.03 8.21 52.4 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.900000 East Note: 4 1 300.000 1 9.02 10.46 10.13 9.39 8.42 7.43 5.71 4.23 3.07 8.94 52.7 GPS Position: Latitude = 42°2.868940 North Longitude = 0°9.000000 East Note: 5 1 402.000 1 8.97 9.18 8.80 8.13 7.28 6.43 4.98 3.73 2.76 7.70 52.7 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note: 6 1 500.000 1 9.05 7.74 7.30 6.67 5.87 5.11 3.83 2.78 1.69 6.57 52.7 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note: 7 1 606.000 1 8.84 7.91 7.26 6.51 5.66 4.92 3.74 2.78 2.33 6.51 53.5 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note: 8 1 704.000 1 8.75 8.24 7.57 6.78 5.87 5.09 3.87 2.87 2.19 6.81 53.1 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note 9 1 802.000 1 9.06 8.49 8.01 7.21 6.29 5.45 4.11 3.03 2.33 6.81 53.1 GPS Position: Latitude = 42°2.868940 North Longitude = 0°0.000000 East Note: 10 1 899.000 1 9.10 9.25 8.67 7.84 6.80 5.77 4.12 2.86 2.20 7.31 54.6 GPS Position: Latitude = 42°2.868940 North Longitude = 0°1.000000 East Note: 11 1 1002.000 1 8.66 7.75 7.27 6.50 5.62 4.86 3.68 2.72 2.17 6.22 54.9 GPS Position: Latitude = 42°2.868940 North Longitude = 0°1.000000 East Note: 12 1 1101.000 1 9.01 7.84 7.59 6.90 6.05 5.22 3.83 2.74 2.08 6.13 54.2 GPS Position: Latitude = 0°0.000000 South Longitude = 0°0.000000 East Note. 13 1 1205.000 1 9.17 10.55 9.79 8.80 7.60 6.55 4.89 3.61 2.78 8.66 54.9 GPS Position: Latitude = 41°56.822820 North Longitude = 94°37.771021 West Note: 14 1 1302.000 1 9.06 9.68 9.31 8.45 7.42 6.50 4.95 3.65 2.87 7.94 54.6 GPS Position: Latitude = 41°56.802744 North Longitude = 94°37.768930 West Note: 15 1 1400.000 1 8.94 10.55 10.35 9.49 8.31 7.15 5.21 3.70 2.88 8.50 54.6 GPS Position: Latitude = 41°56.786651 North Longitude = 94°37.768529 West Note: 16 1 1502.000 1 8.90 11.20 10.67 9.53 8.07 6.81 4.82 3.45 2.78 8.80 55.3 GPS Position: Latitude = 41°56.769120 North Longitude = 94°37.768131 West Note:

M3

MЗ Date-Time: 12-15-2004 11:49:50 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Carroll N. of Breda Temp: 35 Operator: COLTON / DENEKAS Comments: NORTH OF BREDA, CARROLL CO., NORTHBOUND 1 1 0.000 1 8.76 8.98 8.56 8.02 7.30 6.64 5.42 4.20 3.23 8.04 43.6 GPS Position: Latitude = Longitude = Note: 2 1 102.000 1 9.05 6.92 6.63 6.21 5.68 5.25 4.46 3.63 2.97 6.08 43.2 GPS Position: Latitude = Longitude = Note: 3 1 201.000 1 8.89 9.06 8.58 7.94 7.17 6.51 5.35 4.30 3.46 7.77 44.3 GPS Position: Latitude = Longitude = Note: 4 1 300.000 1 8.74 11.30 10.87 10.09 9.02 8.09 6.42 4.95 3.87 9.60 45.0 GPS Position: Latitude = Longitude = Note: 5 1 400.000 1 8.96 11.68 10.98 10.17 9.13 8.21 6.50 4.98 3.87 9.94 45.4 GPS Position: Latitude = Longitude = Note: 6 1 500.000 1 8.76 9.45 9.21 8.65 7.78 7.02 5.60 4.33 3.31 8.18 46.1 GPS Position: Latitude = Longitude = Note: 7 1 612.000 1 8.77 10.46 9.98 9.31 8.41 7.62 6.17 4.76 3.63 8.92 45.8 GPS Position: Latitude = Longitude = Note: 8 1 736.000 1 8.80 10.11 9.48 8.68 7.73 6.86 5.41 4.13 3.20 8.34 45.4 GPS Position: Latitude = Longitude = Note: 9 1 814.000 1 8.71 10.04 9.49 8.79 7.95 7.18 5.77 4.46 3.45 8.56 45.0 GPS Position: Latitude = Longitude = Note: 10 1 899.000 1 8.66 12.18 11.61 10.75 9.65 8.68 6.86 5.24 3.97 10.44 46.1 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.79 11.99 11.27 10.35 9.12 8.08 6.20 4.65 3.47 10.01 46.9 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 8.76 11.63 11.14 10.18 8.97 7.94 6.10 4.55 3.38 9.74 46.9 GPS Position: Latitude = Longitude = Note 13 1 1199.000 1 8.82 11.33 10.73 9.85 8.74 7.75 5.99 4.43 3.28 9.34 47.6 GPS Position: Latitude = Longitude = Note: 14 1 1302.000 1 8.66 12.45 11.79 10.54 9.02 7.73 5.73 4.12 2.91 9.91 47.2 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 8.59 11.02 10.37 9.57 8.59 7.67 5.94 4.41 3.21 9.49 47.2 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.71 12.16 11.36 10.44 9.26 8.20 6.35 4.76 3.54 10.11 47.6 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 14:54:50 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Cerro Gordo B43 Temp: 23 Operator: bad Comments: 1 1 0.000 1 9.29 6.18 5.59 5.14 4.72 4.32 3.57 2.84 2.29 5.11 35.5 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.45 5.50 5.17 4.77 4.41 4.11 3.49 2.84 2.29 4.54 35.2 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 9.53 5.68 5.36 5.03 4.69 4.38 3.73 3.04 2.48 4.91 35.2 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 9.50 4.95 4.81 4.47 4.16 3.86 3.32 2.73 2.25 4.27 35.5 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 9.41 5.92 5.55 5.11 4.70 4.30 3.56 2.86 2.32 4.89 35.5 GPS Position: Latitude = Longitude = Note: 6 1 500.000 1 9.47 4.75 4.36 4.02 3.69 3.38 2.82 2.26 1.82 3.91 35.2 GPS Position: Latitude = Longitude = Note: 7 1 602.000 1 9.15 5.21 5.00 4.59 4.22 3.87 3.17 2.51 1.95 4.21 35.5 GPS Position: Latitude = Longitude = Note: 8 1 702.000 1 9.19 4.99 4.86 4.44 4.05 3.71 3.11 2.51 2.08 4.14 35.5 GPS Position: Latitude = Longitude = Note: 9 1 811.000 1 9.37 4.67 4.41 4.04 3.69 3.35 2.72 2.13 1.70 3.84 35.5 GPS Position: Latitude = Longitude = Note: 10 1 963.000 1 9.42 4.19 3.99 3.65 3.32 2.99 2.37 1.84 1.43 3.45 34.1 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 9.42 4.03 3.89 3.51 3.16 2.84 2.25 1.75 1.38 3.26 35.2 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 9.31 4.46 4.39 4.04 3.74 3.39 2.76 2.20 1.75 3.79 35.9 GPS Position: Latitude = Longitude = Note 13 1 1200.000 1 9.27 4.96 4.90 4.58 4.17 3.76 3.05 2.37 1.87 4.06 35.9 GPS Position: Latitude = Longitude = Note: 14 1 1303.000 1 9.40 4.88 4.48 4.12 3.75 3.41 2.81 2.24 1.78 4.07 36.3 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 9.27 4.65 4.17 3.86 3.54 3.20 2.61 2.02 1.61 3.89 33.3 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.34 3.74 3.54 3.31 3.05 2.80 2.33 1.88 1.55 3.25 33.3 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-15-2004 6:46:17 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Cerro Gordo S. Shore Temp: 14 Operator: COLTON / DENEKAS Comments: RTE B35 EASTBOUND 1 1 0.000 1 9.68 4.24 4.09 3.82 3.50 3.19 2.62 2.08 1.68 3.85 23.8 GPS Position: Latitude = Longitude = Note: 2 1 103.000 1 10.02 2.56 2.46 2.28 2.11 1.94 1.66 1.37 1.18 2.25 24.2 GPS Position: Latitude = Longitude = Note: 3 1 199.000 1 9.80 2.49 2.32 2.13 1.96 1.82 1.56 1.30 1.10 2.08 24.2 GPS Position: Latitude = Longitude = Note: 4 1 300.000 1 9.60 4.11 4.06 3.81 3.51 3.24 2.71 2.18 1.71 3.55 24.2 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 9.78 3.71 3.65 3.41 3.11 2.86 2.36 1.92 1.59 3.29 24.9 GPS Position: Latitude = Longitude = Note: 6 1 502.000 1 9.76 4.08 3.96 3.70 3.40 3.13 2.63 2.17 1.81 3.61 24.9 GPS Position: Latitude = Longitude = Note: 7 1 600.000 1 9.53 5.41 5.27 4.81 4.29 3.83 3.02 2.38 1.94 4.39 25.3 GPS Position: Latitude = Longitude = Note: 8 1 706.000 1 9.58 4.42 4.26 3.96 3.60 3.29 2.72 2.20 1.78 3.88 24.2 GPS Position: Latitude = Longitude = Note: 9 1 796.000 1 9.61 4.92 4.80 4.45 4.06 3.67 2.94 2.28 1.77 4.23 24.9 GPS Position: Latitude = Longitude = Note: 10 1 900.000 1 9.31 5.20 5.17 4.79 4.35 3.93 3.15 2.44 1.91 4.37 24.5 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 9.58 8.52 6.72 6.05 5.24 4.53 3.39 2.50 1.79 6.77 25.3 GPS Position: Latitude = Longitude = Note: 12 1 1102.000 1 9.67 5.09 4.90 4.53 4.10 3.68 2.92 2.23 1.70 4.33 24.5 GPS Position: Latitude = Longitude = Note 13 1 1199.000 1 9.67 6.23 6.04 5.59 5.05 4.51 3.54 2.67 2.01 5.30 25.6 GPS Position: Latitude = Longitude = Note: 14 1 1305.000 1 9.60 5.97 5.74 5.30 4.77 4.28 3.35 2.55 1.94 5.06 25.3 GPS Position: Latitude = Longitude = Note: 15 1 1425.000 1 9.06 5.35 5.23 4.83 4.41 3.97 3.16 2.45 1.84 4.57 23.4 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.99 6.00 5.61 5.20 4.75 4.29 3.44 2.64 2.08 5.28 25.3 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 9:17:41 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Clinton E50 Temp: 11 Operator: bad Comments: 1 1 0.000 1 9.50 11.93 10.91 9.89 8.68 7.53 5.68 4.24 3.28 9.66 23.8 GPS Position: Latitude = Longitude = Note: 2 1 121.000 1 9.30 12.11 11.38 10.34 9.00 7.81 5.79 4.19 3.02 9.64 24.2 GPS Position: Latitude = Longitude = Note: 3 1 201.000 1 9.36 9.03 8.65 7.92 6.99 6.12 4.66 3.44 2.60 7.35 23.4 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 8.60 8.62 8.34 7.63 6.75 5.92 4.47 3.28 2.44 7.26 24.5 GPS Position: Latitude = Longitude = Note: 5 1 405.000 1 9.02 11.03 10.40 9.42 8.25 7.17 5.35 3.88 2.82 9.11 24.5 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 500.000 \ 1 \ 8.95 \ 11.64 \ 10.92 \ 9.95 \ 8.67 \ 7.48 \ 5.57 \ 4.09 \ 3.11 \ 9.56 \ 24.5$ GPS Position: Latitude = Longitude = Note: 7 1 600.000 1 9.15 9.64 9.57 8.87 7.98 7.12 5.56 4.14 2.57 7.99 25.3 GPS Position: Latitude = Longitude = Note: 8 1 706.000 1 9.16 9.92 9.71 8.97 8.07 7.18 5.60 4.10 2.89 8.30 26.0 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 9.34 9.20 8.83 8.08 7.17 6.26 4.72 3.44 2.55 7.69 26.0 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 9.24 11.03 10.36 9.43 8.27 7.22 5.51 4.09 3.04 9.16 26.0 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 9.29 10.49 10.00 9.17 8.14 7.13 5.48 4.06 3.07 8.84 26.0 GPS Position: Latitude = Longitude = Note: 12 1 1104.000 1 9.01 8.98 8.62 7.91 7.03 6.18 4.71 3.49 2.68 7.52 26.0 GPS Position: Latitude = Longitude = Note 13 1 1201.000 1 8.89 7.52 7.33 6.74 6.04 5.36 4.12 3.06 2.63 6.81 26.0 GPS Position: Latitude = Longitude = Note: 14 1 1302.000 1 9.11 12.24 9.71 8.38 6.84 5.78 4.28 3.11 2.39 9.49 26.0 GPS Position: Latitude = Longitude = Note: 15 1 1402.000 1 9.11 7.42 7.20 6.76 6.21 5.62 4.56 3.52 3.06 6.61 26.0 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.89 7.99 7.66 7.06 6.32 5.59 4.31 3.19 2.37 6.81 25.6 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 8:33: 9 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Clinton Z30 Temp: 8 Operator: bad Comments: 1 1 0.000 1 10.03 6.55 5.89 5.33 4.65 4.08 3.12 2.30 1.74 5.27 44.7 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.88 6.99 6.64 6.09 5.41 4.75 3.54 2.55 1.82 5.91 38.5 GPS Position: Latitude = Longitude = Note: 3 1 206.000 1 9.83 6.26 6.01 5.53 4.96 4.38 3.32 2.43 1.77 5.28 41.7 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 9.46 6.07 5.76 5.23 4.57 3.98 2.95 2.11 1.56 4.98 42.8 GPS Position: Latitude = Longitude = Note: 5 1 409.000 1 9.58 5.74 5.61 5.13 4.59 4.00 3.03 2.22 1.65 4.75 39.6 GPS Position: Latitude = Longitude = Note: 6 1 500.000 1 9.38 8.54 8.36 7.79 7.00 6.24 4.85 3.62 2.63 7.27 38.5 GPS Position: Latitude = Longitude = Note: 7 1 609.000 1 9.40 6.45 6.22 5.72 5.09 4.50 3.42 2.52 1.89 5.35 40.6 GPS Position: Latitude = Longitude = Note: 8 1 701.000 1 9.55 6.71 6.58 6.10 5.55 5.01 4.01 3.08 2.37 5.71 39.6 GPS Position: Latitude = Longitude = Note: 9 1 801.000 1 9.09 6.63 6.54 6.09 5.53 4.97 3.95 3.01 2.28 5.73 39.2 GPS Position: Latitude = Longitude = Note: 10 1 900.000 1 9.25 6.39 6.17 5.66 5.04 4.44 3.38 2.51 1.96 5.38 42.1 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 9.53 5.71 5.33 4.83 4.26 3.75 2.87 2.18 1.68 5.02 41.7 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 9.71 4.83 4.73 4.45 4.14 3.84 3.13 2.37 1.86 4.15 33.0 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 9.50 4.71 4.57 4.24 3.86 3.48 2.80 2.16 1.68 3.98 33.0 GPS Position: Latitude = Longitude = Note: 14 1 1397.000 1 9.46 10.29 9.97 8.94 7.68 6.50 4.57 3.11 2.16 8.34 33.0 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 9.50 6.32 6.08 5.62 5.08 4.56 3.55 2.66 1.96 5.41 33.3 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 9.70 5.79 5.41 5.02 4.57 4.13 3.30 2.52 1.91 5.08 33.3 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 11:55:55 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Delaware US20 Temp: 17 Operator: bad Comments: 1 1 48.000 1 9.78 1.76 1.57 1.45 1.35 1.26 1.08 0.00 0.63 1.41 30.0 GPS Position: Latitude = Longitude = Note: 2 1 111.000 1 9.92 1.68 1.46 1.34 1.21 1.10 0.90 0.69 0.00 1.33 30.0 GPS Position: Latitude = Longitude = Note: 3 1 201.000 1 9.75 2.12 1.99 1.82 1.66 1.49 1.23 0.97 0.77 1.76 29.3 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 9.70 2.03 1.83 1.68 1.56 1.43 1.21 0.96 0.00 1.67 30.4 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 9.60 2.23 2.04 1.88 1.73 1.56 1.24 0.98 0.48 1.78 30.0 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 500.000 \ 1 \ 9.71 \ 1.95 \ 1.80 \ 1.65 \ 1.50 \ 1.36 \ 1.12 \ 0.88 \ 0.37 \ 1.58 \ 30.0$ GPS Position: Latitude = Longitude = Note: 7 1 689.000 1 9.58 2.48 2.29 2.07 1.88 1.70 1.40 1.10 0.88 2.04 30.8 GPS Position: Latitude = Longitude = Note: 8 1 701.000 1 9.57 3.09 2.84 2.59 2.34 2.09 1.67 1.27 0.97 2.65 30.4 GPS Position: Latitude = Longitude = Note: 9 1 813.000 1 9.42 2.78 2.63 2.45 2.28 2.13 1.82 1.50 1.27 2.41 30.4 GPS Position: Latitude = Longitude = Note: 10 1 901.000 1 9.61 2.85 2.71 2.50 2.30 2.11 1.76 1.42 1.18 2.42 30.4 GPS Position: Latitude = Longitude = Note: 11 1 1012.000 1 9.57 2.62 2.40 2.20 2.00 1.82 1.52 1.23 1.06 2.15 31.1 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 9.52 2.32 2.20 2.03 1.88 1.74 1.48 1.21 1.02 1.96 30.8 GPS Position: Latitude = Longitude = Note 13 1 1256.000 1 9.56 3.07 2.89 2.66 2.43 2.21 1.82 1.42 1.10 2.53 32.2 GPS Position: Latitude = Longitude = Note: 14 1 1343.000 1 9.51 3.79 3.56 3.24 2.90 2.58 2.03 1.54 1.18 3.17 31.5 GPS Position: Latitude = Longitude = Note: 15 1 1421.000 1 9.38 2.00 1.84 1.67 1.53 1.43 1.23 1.07 0.72 1.58 32.6 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.43 2.71 2.50 2.32 2.14 1.95 1.60 1.27 1.11 2.22 32.2 GPS Position: Latitude = Longitude = Note:

Date-Time: 3-31-2005 9:52:33 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Greene IA144 Temp: 45 Operator: Colton/Stephens Comments: 1 1 0.000 1 8.41 19.58 17.20 14.38 11.91 9.68 6.28 3.98 2.76 14.00 57.9 GPS Position: Latitude = 41°53.899240 North Longitude = 94°9.886849 West Note: 2 1 101.000 1 8.56 14.78 12.99 11.34 9.53 7.87 5.34 3.60 2.64 10.83 58.6 GPS Position: Latitude = 41°53.912917 North Longitude = 94°9.900007 West Note: 3 1 201.000 1 8.50 12.21 11.01 9.94 8.62 7.43 5.37 3.73 2.79 9.22 59.0 GPS Position: Latitude = 41°53.926647 North Longitude = 94°9.912918 West Note: 4 1 300.000 1 8.50 13.18 11.96 10.61 9.02 7.65 5.44 3.71 2.68 10.21 58.6 GPS Position: Latitude = 41°53.940205 North Longitude = 94°9.925837 West Note: 5 1 400.000 1 8.55 15.19 13.50 11.96 10.08 8.44 5.91 4.11 3.15 11.17 57.9 GPS Position: Latitude = 41°53.954002 North Longitude = 94°9.938764 West Note: 6 1 502.000 1 8.48 13.86 12.41 11.00 9.35 7.94 5.35 3.81 2.99 10.19 58.2 GPS Position: Latitude = 41°53.967669 North Longitude = 94°9.951789 West Note: 7 1 600.000 1 8.56 18.22 14.64 11.34 9.18 7.44 5.03 3.44 2.62 12.21 58.6 GPS Position: Latitude = 41°53.980653 North Longitude = 94°9.964273 West Note: 8 1 701.000 1 8.38 14.97 13.24 11.78 9.96 8.16 5.04 3.38 2.59 11.12 59.7 GPS Position: Latitude = 41°53.994070 North Longitude = 94°9.977096 West Note 9 1 802.000 1 8.40 14.68 12.89 10.94 8.75 6.93 4.39 2.92 2.23 10.54 59.7 GPS Position: Latitude = 41°54.007426 North Longitude = 94°9.989810 West Note: 10 1 902.000 1 8.67 15.60 13.02 11.24 9.14 7.42 5.09 3.56 2.76 11.16 60.1 GPS Position: Latitude = 41°54.020772 North Longitude = 94°10.002568 West Note: 11 1 1002.000 1 8.43 12.98 11.64 10.48 9.05 7.65 5.31 3.59 2.68 10.00 59.7 GPS Position: Latitude = 41°54.034297 North Longitude = 94°10.015406 West Note: 12 1 1101.000 1 8.38 18.22 16.05 13.84 11.15 8.81 5.53 3.58 2.79 12.46 59.7 GPS Position: Latitude = 41°54.047381 North Longitude = 94°10.028029 West Note. 13 1 1202.000 1 8.33 16.49 14.72 12.59 10.27 8.26 5.35 3.59 2.78 11.50 59.3 GPS Position: Latitude = 41°54.062034 North Longitude = 94°10.041914 West Note: 14 1 1306.000 1 8.48 14.39 12.70 11.13 9.37 7.84 5.36 3.60 2.60 10.41 59.7 GPS Position: Latitude = 41°54.076512 North Longitude = 94°10.055745 West Note: 15 1 1409.000 1 8.31 16.61 14.95 13.08 10.70 8.65 5.65 3.65 2.58 11.87 59.7 GPS Position: Latitude = 41°54.090087 North Longitude = 94°10.068853 West Note: 16 1 1493.000 1 8.39 17.01 14.33 12.31 10.15 8.37 5.74 3.89 2.81 11.92 59.7 GPS Position: Latitude = 41°54.099005 North Longitude = 94°10.077235 West Note:

M3

Date-Time: 3-31-2005 9: 4:46 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Guthrie IA4 Temp: 40 Operator: Colton/Stephens Comments: 1 1 0.000 1 8.75 8.55 7.30 6.09 4.83 3.89 2.67 1.86 1.57 5.79 53.8 GPS Position: Latitude = 41°46.633703 North Longitude = 94°22.049217 West Note: 2 1 116.000 1 8.75 9.50 8.32 7.25 5.99 4.97 3.47 2.40 1.93 6.97 54.6 GPS Position: Latitude = 41°46.652822 North Longitude = 94°22.048793 West Note: 3 1 200.000 1 8.72 11.01 10.25 8.86 7.18 5.45 3.17 2.18 1.92 7.25 54.6 GPS Position: Latitude = 41°46.666376 North Longitude = 94°22.048572 West Note: 4 1 308.000 1 8.76 8.66 7.97 6.99 5.82 4.79 3.25 2.20 1.87 6.49 54.9 GPS Position: Latitude = 41°46.686248 North Longitude = 94°22.048163 West Note: 5 1 401.000 1 8.71 9.40 8.57 7.35 5.98 4.85 3.27 2.25 1.89 6.84 54.6 GPS Position: Latitude = 41°46.700869 North Longitude = 94°22.047011 West Note: 6 1 500.000 1 8.70 11.05 10.12 8.68 7.03 5.66 3.72 2.43 1.97 7.91 53.8 GPS Position: Latitude = 41°46.718068 North Longitude = 94°22.046983 West Note: 7 1 603.000 1 8.61 10.41 9.50 8.17 6.62 5.35 3.54 2.39 1.60 7.54 53.8 GPS Position: Latitude = 41°46.734327 North Longitude = 94°22.046821 West Note: 8 1 701.000 1 8.69 12.97 12.05 10.38 8.29 6.57 4.21 2.83 2.34 9.19 53.8 GPS Position: Latitude = 41°46.750536 North Longitude = 94°22.046494 West Note 9 1 801.000 1 8.62 10.48 9.46 8.18 6.72 5.56 3.97 2.92 2.53 7.77 53.8 GPS Position: Latitude = 41°46.766797 North Longitude = 94°22.045948 West Note: 10 1 902.000 1 8.97 7.73 7.15 6.33 5.26 4.33 3.08 2.25 1.98 5.86 54.2 GPS Position: Latitude = 41°46.782143 North Longitude = 94°22.045162 West Note: 11 1 1003.000 1 8.89 10.78 9.51 8.13 6.47 5.18 3.47 2.40 2.01 7.83 53.5 GPS Position: Latitude = 41°46.801401 North Longitude = 94°22.044783 West Note: 12 1 1102.000 1 8.96 8.19 7.45 6.48 5.33 4.35 2.95 2.03 1.78 6.07 53.5 GPS Position: Latitude = 41°46.816692 North Longitude = 94°22.044366 West Note. 13 1 1205.000 1 8.86 9.33 8.73 7.65 6.33 5.19 3.58 2.47 2.07 6.96 54.9 GPS Position: Latitude = 41°46.833718 North Longitude = 94°22.044071 West Note: 14 1 1304.000 1 8.84 9.17 8.54 7.62 6.50 5.50 3.97 2.83 2.34 7.14 54.6 GPS Position: Latitude = 41°46.850051 North Longitude = 94°22.043721 West Note: 15 1 1400.000 1 8.77 10.82 10.01 8.79 7.31 5.97 4.00 2.67 2.10 8.10 54.6 GPS Position: Latitude = 41°46.864991 North Longitude = 94°22.043355 West Note: 16 1 1501.000 1 8.85 11.90 10.64 9.11 7.39 5.98 4.02 2.70 1.67 8.49 54.6 GPS Position: Latitude = 41°46.878652 North Longitude = 94°22.043062 West Note:

M3

MЗ Date-Time: 3-30-2005 12:18:19 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Hardin D35 Temp: 70 Operator: Colton/Denekas Comments: 1 1 0.000 1 9.06 12.21 9.86 8.40 6.85 5.62 3.92 2.78 2.15 8.55 79.1 GPS Position: Latitude = Longitude = Note: 2 1 99.000 1 8.82 17.58 15.49 13.25 10.71 8.56 5.54 3.63 2.97 13.04 79.5 GPS Position: Latitude = Longitude = Note: 3 1 214.000 1 8.64 18.98 15.95 13.47 10.51 8.09 4.81 2.90 2.71 13.45 79.8 GPS Position: Latitude = Longitude = Note: 4 1 299.000 1 8.38 25.44 21.09 17.61 13.51 10.24 5.86 3.43 2.66 16.11 80.9 GPS Position: Latitude = Longitude = Note: 5 1 402.000 1 8.65 20.54 17.58 15.16 12.32 9.83 6.24 4.02 2.92 16.22 79.1 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 500.000 \ 1 \ 8.46 \ 31.78 \ 23.98 \ 19.77 \ 15.06 \ 11.40 \ 6.72 \ 4.21 \ 3.48 \ 21.63 \ 79.1$ GPS Position: Latitude = Longitude = Note: 7 1 602.000 1 7.91 39.80 34.04 27.76 19.83 14.34 6.84 4.33 3.92 27.86 79.8 GPS Position: Latitude = Longitude = Note: 8 1 700.000 1 8.28 24.57 20.80 17.57 13.78 10.82 6.79 4.42 3.76 18.77 79.8 GPS Position: Latitude = Longitude = Note: 9 1 801.000 1 8.26 22.93 20.47 17.65 14.33 11.53 7.56 4.91 3.70 17.77 79.1 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 8.03 41.49 37.60 29.79 21.26 14.32 6.80 4.28 3.70 31.80 79.5 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 9.17 48.58 43.74 35.41 25.92 16.98 8.01 4.74 3.93 32.91 78.0 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 9.20 30.12 26.57 22.80 17.89 13.87 8.39 5.07 3.46 24.05 77.6 GPS Position: Latitude = Longitude = Note 13 1 1199.000 1 9.55 10.39 9.87 9.03 8.08 7.20 5.68 4.22 3.35 8.39 77.6 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 9.40 23.40 21.41 18.69 15.33 12.43 8.18 5.28 3.72 17.49 78.4 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 9.53 26.43 24.17 21.01 17.20 13.74 8.67 5.25 3.59 19.78 78.4 GPS Position: Latitude = Longitude = Note: 16 1 1498.000 1 9.24 27.35 23.71 19.22 14.36 10.53 5.64 3.15 2.80 16.93 80.2 GPS Position: Latitude = Longitude = Note:

M3 Date-Time: 12-15-2004 13:30:48 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Harrison IA44 Temp: 37 Operator: COLTON / DENEKAS Comments: IA 44 WESTBOUND 1 1 0.000 1 8.91 5.76 4.91 4.66 4.34 4.04 3.46 2.86 2.47 4.53 46.9 GPS Position: Latitude = Longitude = Note: 2 1 113.000 1 9.02 4.90 4.69 4.44 4.12 3.83 3.26 2.69 2.23 4.29 46.5 GPS Position: Latitude = Longitude = Note: 3 1 207.000 1 8.90 5.67 4.96 4.67 4.32 4.00 3.38 2.76 2.26 4.48 46.5 GPS Position: Latitude = Longitude = Note: 4 1 309.000 1 9.06 4.83 4.97 4.70 4.37 4.06 3.49 2.89 2.40 4.54 46.9 GPS Position: Latitude = Longitude = Note: 4 1 311.000 1 8.95 8.35 4.95 4.68 4.35 4.07 3.48 2.87 2.36 4.54 46.5 GPS Position: Latitude = Longitude = Note: 5 1 399.000 1 8.85 7.86 5.28 4.97 4.61 4.26 3.65 3.01 2.45 4.79 46.9 GPS Position: Latitude = Longitude = Note: 6 1 497.000 1 8.75 6.09 5.84 5.49 5.06 4.65 3.91 3.17 2.54 5.41 46.9 GPS Position: Latitude = Longitude = Note: 7 1 604.000 1 8.89 5.26 5.23 4.93 4.58 4.23 3.59 2.92 2.40 4.91 47.2 GPS Position: Latitude = Longitude = Note: 8 1 734.000 1 8.80 6.91 6.55 6.11 5.57 5.06 4.16 3.28 2.61 6.10 47.6 GPS Position: Latitude = Longitude = Note: 9 1 825.000 1 8.89 4.68 4.69 4.39 4.03 3.73 3.21 2.67 2.21 4.24 49.1 GPS Position: Latitude = Longitude = Note: 9 1 825.000 1 8.87 4.86 4.68 4.37 4.02 3.72 3.20 2.64 2.21 4.23 48.3 GPS Position: Latitude = Longitude = Note: 10 1 898.000 1 8.91 3.96 4.13 3.93 3.73 3.55 3.18 2.72 2.32 3.97 49.8 GPS Position: Latitude = Longitude = Note 10 1 944.000 1 8.74 4.16 4.14 3.94 3.75 3.56 3.20 2.74 2.37 4.00 46.5 GPS Position: Latitude = Longitude = Note: 11 1 1004.000 1 8.86 4.22 3.95 3.76 3.58 3.43 3.09 2.66 2.34 3.75 48.3 GPS Position: Latitude = Longitude = Note: 12 1 1158.000 1 8.46 4.01 4.01 3.78 3.54 3.30 2.86 2.42 2.02 3.73 49.8 GPS Position: Latitude = Longitude = Note: 13 1 1224.000 1 9.76 5.33 5.04 4.75 4.42 4.09 3.49 2.86 2.37 4.84 46.5 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 9.77 5.92 5.85 5.52 5.13 4.75 4.03 3.28 2.70 5.64 48.7 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 9.56 5.88 5.63 5.35 5.05 4.71 4.08 3.38 2.85 5.46 48.7 GPS Position: Latitude = Longitude = Note: 16 1 1502.000 1 9.63 4.18 3.93 3.76 3.59 3.43 3.08 2.66 2.32 3.86 47.6 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 10:33:59 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Jackson US61 Temp: 14 Operator: bad Comments: 1 1 0.000 1 9.36 3.61 3.29 3.05 2.80 2.57 2.13 1.71 1.35 3.54 30.4 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.46 3.41 3.37 3.09 2.81 2.56 2.14 1.74 1.40 2.85 30.0 GPS Position: Latitude = Longitude = Note: 3 1 260.000 1 9.52 2.93 2.77 2.55 2.32 2.13 1.80 1.48 1.23 2.39 30.8 GPS Position: Latitude = Longitude = Note: 4 1 300.000 1 9.47 3.83 3.72 3.44 3.14 2.87 2.35 1.82 1.40 3.20 30.4 GPS Position: Latitude = Longitude = Note: 5 1 403.000 1 9.40 3.49 3.34 3.09 2.84 2.63 2.22 1.80 1.39 2.92 31.1 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 500.000 \ 1 \ 9.43 \ 3.51 \ 3.40 \ 3.16 \ 2.91 \ 2.70 \ 2.30 \ 1.90 \ 1.51 \ 3.06 \ 30.8$ GPS Position: Latitude = Longitude = Note: 7 1 604.000 1 9.34 5.42 5.22 4.82 4.40 3.97 3.21 2.46 1.84 4.64 30.0 GPS Position: Latitude = Longitude = Note: 8 1 701.000 1 9.25 2.81 2.67 2.45 2.26 2.10 1.85 1.65 1.46 2.32 31.1 GPS Position: Latitude = Longitude = Note: 9 1 803.000 1 9.35 2.79 2.64 2.44 2.28 2.13 1.88 1.62 1.51 2.36 30.4 GPS Position: Latitude = Longitude = Note: 10 1 901.000 1 9.37 2.80 2.66 2.46 2.30 2.16 1.92 1.66 1.57 2.37 31.1 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 9.19 3.02 2.90 2.70 2.53 2.38 2.11 1.86 0.00 2.57 31.1 GPS Position: Latitude = Longitude = Note: 12 1 1109.000 1 9.17 2.94 2.82 2.62 2.46 2.33 2.07 1.79 1.64 2.50 31.1 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 9.12 2.98 2.85 2.62 2.42 2.27 1.97 1.65 1.52 2.53 31.1 GPS Position: Latitude = Longitude = Note: 14 1 1401.000 1 9.19 2.76 2.61 2.43 2.30 2.16 1.95 1.74 1.62 2.40 31.1 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 9.14 2.61 2.50 2.34 2.20 2.08 1.86 1.62 1.47 2.25 31.1 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 9.41 2.62 2.41 2.25 2.10 1.97 1.75 1.50 0.00 2.25 31.1 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-15-2004 15:18: 5 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Montgomery IA48 Temp: 40 Operator: COLTON / DENEKAS Comments: IA 48 SOUTHBOUND 1 1 0.000 1 10.15 5.10 4.71 4.39 4.04 3.72 3.13 2.50 2.00 4.33 49.4 GPS Position: Latitude = Longitude = Note: 2 1 102.000 1 10.01 5.47 5.05 4.70 4.29 3.88 3.17 2.46 1.87 4.64 49.4 GPS Position: Latitude = Longitude = Note: 3 1 301.000 1 9.76 6.14 5.61 5.20 4.77 4.36 3.56 2.75 2.08 5.11 49.4 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 9.92 7.48 7.30 6.68 5.85 5.14 3.92 2.90 2.10 6.06 49.8 GPS Position: Latitude = Longitude = Note: 5 1 404.000 1 9.78 6.48 6.03 5.58 5.04 4.59 3.74 2.87 2.15 5.41 49.4 GPS Position: Latitude = Longitude = Note: $6\ 1\ 503.000\ 1\ 9.86\ 6.01\ 5.55\ 5.14\ 4.68\ 4.24\ 3.48\ 2.71\ 2.11\ 5.09\ 49.8$ GPS Position: Latitude = Longitude = Note: 7 1 601.000 1 9.98 6.15 5.58 5.09 4.60 4.13 3.33 2.58 1.97 5.16 49.4 GPS Position: Latitude = Longitude = Note: 8 1 705.000 1 9.70 6.77 6.27 5.79 5.22 4.69 3.61 2.65 2.25 5.51 49.1 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 9.93 6.12 5.55 5.08 4.58 4.12 3.34 2.61 2.03 5.00 48.7 GPS Position: Latitude = Longitude = Note: 10 1 903.000 1 9.95 5.16 4.93 4.57 4.17 3.80 3.15 2.49 1.95 4.46 46.5 GPS Position: Latitude = Longitude = Note: 11 1 1005.000 1 9.72 4.53 4.14 3.84 3.54 3.26 2.78 2.26 1.87 3.67 49.8 GPS Position: Latitude = Longitude = Note: 12 1 1103.000 1 9.80 4.87 4.35 4.00 3.64 3.33 2.77 2.22 1.84 4.29 49.8 GPS Position: Latitude = Longitude = Note 13 1 1200.000 1 9.81 4.24 3.91 3.63 3.34 3.10 2.64 2.14 1.74 3.50 49.1 GPS Position: Latitude = Longitude = Note: 14 1 1303.000 1 9.75 5.23 4.67 4.31 3.95 3.61 3.02 2.39 1.89 4.44 49.8 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 9.78 4.87 4.54 4.23 3.87 3.57 3.01 2.41 1.91 4.14 49.8 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 10.06 6.40 5.92 5.55 5.16 4.70 3.59 2.55 1.91 5.34 49.4 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 16: 9:21 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Muscatine F70 Temp: 17 Operator: bad Comments: 1 1 0.000 1 9.07 8.58 7.22 6.28 5.31 4.47 3.22 2.31 1.69 6.30 27.5 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 8.86 12.33 10.93 9.19 7.24 5.60 3.43 2.03 1.57 8.47 28.2 GPS Position: Latitude = Longitude = Note: 3 1 205.000 1 8.71 10.88 9.89 8.36 6.52 5.11 3.20 2.17 1.71 7.74 27.8 GPS Position: Latitude = Longitude = Note: 4 1 299.000 1 8.84 12.46 11.27 9.53 7.44 5.73 3.43 2.16 1.63 8.60 27.1 GPS Position: Latitude = Longitude = Note: 5 1 399.000 1 8.79 16.35 13.32 10.34 7.12 4.83 2.28 1.53 1.31 9.05 28.2 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 498.000 \ 1 \ 9.01 \ 9.81 \ 8.60 \ 7.07 \ 5.53 \ 4.34 \ 2.76 \ 1.82 \ 1.53 \ 6.28 \ 28.2$ GPS Position: Latitude = Longitude = Note: 7 1 624.000 1 8.96 6.79 6.22 5.40 4.54 3.82 2.77 2.01 1.56 4.93 28.9 GPS Position: Latitude = Longitude = Note: 8 1 707.000 1 8.89 7.57 7.01 6.17 5.15 4.31 3.05 2.20 1.75 5.71 28.2 GPS Position: Latitude = Longitude = Note: 9 1 815.000 1 8.90 6.32 5.72 5.02 4.25 3.64 2.70 2.01 1.61 4.70 29.3 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 8.81 8.20 7.73 6.71 5.47 4.48 3.07 2.14 1.68 5.94 28.2 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.92 7.00 6.33 5.54 4.62 3.86 2.76 1.97 1.51 5.21 27.8 GPS Position: Latitude = Longitude = Note: 12 1 1158.000 1 8.84 7.51 6.76 5.78 4.73 3.90 2.69 1.88 1.56 5.29 27.5 GPS Position: Latitude = Longitude = Note 13 1 1201.000 1 8.84 6.65 6.13 5.35 4.44 3.69 2.63 1.89 1.48 4.75 28.2 GPS Position: Latitude = Longitude = Note: 14 1 1301.000 1 8.84 6.20 5.90 5.06 4.16 3.46 2.48 1.82 1.54 4.32 28.2 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 8.76 8.21 7.48 6.49 5.42 4.51 3.16 2.25 1.77 5.89 28.6 GPS Position: Latitude = Longitude = Note: 16 1 1499.000 1 8.87 7.47 6.36 5.55 4.68 3.95 2.88 2.11 1.63 5.72 28.2 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 16:36:31 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Muscatine G28 Temp: 17 Operator: bad Comments: 1 1 2.000 1 8.89 12.19 10.83 9.40 7.66 6.02 3.71 2.29 1.65 9.60 26.0 GPS Position: Latitude = Longitude = Note: 2 1 132.000 1 9.02 9.93 9.58 8.41 7.05 5.83 3.92 2.52 1.72 7.99 26.4 GPS Position: Latitude = Longitude = Note: 3 1 207.000 1 8.87 11.82 10.20 8.87 7.26 5.87 3.76 2.35 1.57 8.14 26.0 GPS Position: Latitude = Longitude = Note: 4 1 312.000 1 8.90 11.17 10.21 8.87 7.27 5.82 3.65 2.23 1.49 8.23 26.4 GPS Position: Latitude = Longitude = Note: 5 1 404.000 1 9.00 11.80 10.43 9.01 7.36 5.94 3.75 2.28 1.58 8.61 26.0 GPS Position: Latitude = Longitude = Note: $6\ 1\ 503.000\ 1\ 8.89\ 8.70\ 8.15\ 7.34\ 6.37\ 5.51\ 4.03\ 2.79\ 1.97\ 7.06\ 26.4$ GPS Position: Latitude = Longitude = Note: 7 1 708.000 1 8.91 8.20 7.74 6.84 5.94 5.18 3.81 2.67 1.85 6.23 27.1 GPS Position: Latitude = Longitude = Note: 8 1 710.000 1 9.05 6.69 6.24 5.74 5.19 4.66 3.65 2.71 1.95 5.55 26.7 GPS Position: Latitude = Longitude = Note: 9 1 838.000 1 9.06 7.47 6.89 6.15 5.36 4.65 3.48 2.56 1.98 5.88 26.0 GPS Position: Latitude = Longitude = Note: 10 1 893.000 1 8.84 8.25 7.83 6.90 6.00 5.17 3.74 2.57 1.79 6.29 26.0 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.91 12.82 11.54 10.00 8.17 6.62 4.32 2.74 1.84 9.31 26.4 GPS Position: Latitude = Longitude = Note: 12 1 1113.000 1 8.61 16.19 14.38 12.15 9.26 6.56 3.18 1.91 1.35 10.89 27.1 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 8.94 8.06 7.58 6.70 5.73 4.84 3.44 2.42 1.76 6.21 27.5 GPS Position: Latitude = Longitude = Note: 14 1 1303.000 1 8.67 9.89 8.82 7.61 6.36 5.33 3.78 2.63 1.94 6.93 27.1 GPS Position: Latitude = Longitude = Note: 15 1 1402.000 1 8.74 12.51 11.31 9.69 7.94 6.43 4.21 2.76 1.95 9.02 26.4 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.95 9.31 7.82 6.78 5.55 4.51 3.05 2.10 1.53 7.10 25.6 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 16:47:12 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Muscatine G28E Temp: 16 Operator: bad Comments: 1 1 0.000 1 9.12 8.17 7.81 6.69 5.35 4.26 2.87 2.05 1.64 6.23 26.4 GPS Position: Latitude = Longitude = Note: 2 1 99.000 1 8.92 8.59 8.05 7.13 5.91 4.83 3.25 2.20 1.74 6.50 27.8 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 9.01 8.27 7.50 6.58 5.52 4.60 3.26 2.35 1.82 6.32 28.2 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 8.92 9.15 8.47 7.44 6.24 5.18 3.63 2.58 1.99 6.86 27.8 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 8.94 8.32 7.63 6.68 5.58 4.65 3.28 2.38 1.87 6.18 28.2 GPS Position: Latitude = Longitude = Note: $6\ 1\ 535.000\ 1\ 8.90\ 8.82\ 8.04\ 6.97\ 5.76\ 4.74\ 3.26\ 2.30\ 1.88\ 6.55\ 28.2$ GPS Position: Latitude = Longitude = Note: 7 1 693.000 1 8.70 10.30 9.44 8.03 6.42 5.17 3.45 2.36 1.80 7.33 28.2 GPS Position: Latitude = Longitude = Note: 8 1 702.000 1 8.80 8.38 7.72 6.68 5.50 4.49 3.06 2.10 1.63 6.09 28.2 GPS Position: Latitude = Longitude = Note: 9 1 804.000 1 8.81 9.00 8.28 7.15 5.80 4.63 3.00 1.98 1.48 6.32 29.3 GPS Position: Latitude = Longitude = Note: 10 1 908.000 1 8.97 7.55 6.77 5.88 4.84 3.97 2.70 1.89 1.45 5.60 28.6 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.85 7.68 7.12 6.22 5.19 4.33 3.20 2.49 0.00 5.44 28.2 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 8.90 7.45 7.11 6.21 5.17 4.26 2.99 2.13 1.68 5.57 28.6 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 8.77 8.59 7.71 6.65 5.43 4.42 3.02 2.10 1.61 6.31 28.6 GPS Position: Latitude = Longitude = Note: 14 1 1307.000 1 8.64 9.83 8.94 7.68 6.24 5.07 3.51 2.52 2.01 7.10 29.7 GPS Position: Latitude = Longitude = Note: 15 1 1402.000 1 8.75 9.21 8.30 7.11 5.77 4.69 3.21 2.27 1.78 6.75 28.9 GPS Position: Latitude = Longitude = Note: 16 1 1511.000 1 8.95 9.84 8.44 7.24 5.74 4.58 3.08 2.19 1.71 7.36 29.3 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 15:34:29 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Muscatine Y14N Temp: 18 Operator: bad Comments: 1 1 0.000 1 9.22 9.08 8.33 7.56 6.61 5.67 4.13 2.93 2.10 7.43 31.9 GPS Position: Latitude = Longitude = Note: 2 1 107.000 1 9.20 10.46 9.74 8.74 7.47 6.33 4.50 3.17 2.34 8.63 31.5 GPS Position: Latitude = Longitude = Note: 3 1 203.000 1 9.10 9.29 8.76 7.98 6.97 5.96 4.33 3.11 2.33 7.71 31.5 GPS Position: Latitude = Longitude = Note: 4 1 387.000 1 9.07 11.69 11.09 9.95 8.44 7.08 4.93 3.41 2.47 9.31 28.9 GPS Position: Latitude = Longitude = Note: 5 1 402.000 1 8.85 13.38 12.62 11.20 9.39 7.77 5.30 3.65 2.71 10.27 30.4 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 507.000 \ 1 \ 8.85 \ 15.02 \ 14.38 \ 12.90 \ 11.02 \ 9.31 \ 6.58 \ 4.57 \ 3.29 \ 12.05 \ 28.9$ GPS Position: Latitude = Longitude = Note: 7 1 603.000 1 8.82 13.45 12.94 11.58 9.72 8.02 5.40 3.54 2.45 10.29 29.3 GPS Position: Latitude = Longitude = Note: 8 1 707.000 1 8.57 19.44 18.10 16.02 13.28 10.81 7.05 4.50 3.34 14.53 28.6 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 8.55 17.87 16.70 14.72 12.21 9.95 6.49 4.16 3.00 13.56 28.2 GPS Position: Latitude = Longitude = Note: 10 1 911.000 1 8.62 14.96 14.28 12.57 10.30 8.34 5.41 3.52 2.62 11.14 28.2 GPS Position: Latitude = Longitude = Note: 11 1 1004.000 1 8.56 19.36 18.05 15.26 12.05 9.32 5.81 3.30 2.54 13.21 28.9 GPS Position: Latitude = Longitude = Note: 12 1 1106.000 1 8.95 10.81 10.46 9.38 7.83 6.33 4.28 2.95 2.25 8.34 29.7 GPS Position: Latitude = Longitude = Note 13 1 1199.000 1 8.87 11.01 10.62 9.62 8.38 7.18 5.21 3.74 2.90 8.91 31.5 GPS Position: Latitude = Longitude = Note: 14 1 1324.000 1 8.82 13.53 13.24 11.95 10.28 8.90 5.26 2.44 2.13 9.88 27.8 GPS Position: Latitude = Longitude = Note: 15 1 1394.000 1 8.95 10.43 10.07 8.99 7.70 6.53 4.69 3.33 2.48 8.40 27.5 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.96 11.61 11.32 10.05 8.46 7.04 4.85 3.27 2.30 10.06 27.1 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 15:13:32 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Muscatine Y14S Temp: 16 Operator: bad Comments: 1 1 0.000 1 9.46 10.40 9.56 8.49 7.11 5.82 3.90 2.66 2.00 8.26 33.0 GPS Position: Latitude = Longitude = Note: 2 1 94.000 1 8.48 17.90 16.28 14.02 11.02 8.54 5.03 3.02 2.23 12.81 33.3 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 8.77 16.68 15.61 13.64 11.18 9.00 5.66 3.47 2.42 12.22 29.3 GPS Position: Latitude = Longitude = Note: 4 1 305.000 1 8.46 16.58 14.97 12.92 10.38 8.14 4.93 2.96 2.13 12.13 33.3 GPS Position: Latitude = Longitude = Note: 5 1 403.000 1 7.86 23.49 21.58 18.27 13.62 9.90 4.53 2.89 2.44 18.27 35.2 GPS Position: Latitude = Longitude = Note: 6 1 506.000 1 9.38 9.58 9.29 8.66 7.83 6.93 5.19 3.64 2.61 8.45 36.3 GPS Position: Latitude = Longitude = Note: patch 7 1 610.000 1 9.11 10.07 9.81 9.11 8.18 7.20 5.39 3.84 2.76 8.72 36.3 GPS Position: Latitude = Longitude = Note: patch 8 1 722.000 1 8.90 14.78 14.17 12.47 10.42 8.54 5.64 3.65 2.59 11.72 34.8 GPS Position: Latitude = Longitude = Note: 9 1 801.000 1 8.80 11.21 10.97 9.83 8.55 7.32 5.26 3.64 2.52 9.93 35.9 GPS Position: Latitude = Longitude = Note: 10 1 905.000 1 8.69 16.41 15.39 13.67 11.46 9.47 6.34 3.81 2.60 12.47 35.9 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.44 22.38 20.52 17.78 14.29 11.21 6.79 3.93 2.83 16.98 36.3 GPS Position: Latitude = Longitude = Note: 12 1 1102.000 1 8.66 15.40 13.94 12.13 10.09 8.30 5.43 2.84 2.25 11.28 37.4 GPS Position: Latitude = Longitude = Note. 13 1 1198.000 1 9.00 17.95 16.43 14.68 12.42 10.37 7.05 4.62 3.26 14.01 36.3 GPS Position: Latitude = Longitude = Note: 14 1 1298.000 1 8.05 15.29 14.82 13.47 11.37 9.76 7.05 4.55 2.48 12.48 37.4 GPS Position: Latitude = Longitude = Note: 15 1 1413.000 1 8.54 8.66 8.32 7.63 6.78 5.93 4.47 3.29 2.70 7.28 35.2 GPS Position: Latitude = Longitude = Note: 16 1 1498.000 1 9.01 14.10 13.71 12.61 11.30 10.05 3.96 3.09 2.36 11.00 35.9 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 3-30-2005 10:49:41 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Story S14NB Temp: 71 Operator: Colton/Denekas Comments: 1 1 0.000 1 8.77 5.95 5.20 4.72 4.24 3.83 3.08 2.50 2.09 4.67 82.0 GPS Position: Latitude = Longitude = Note: 2 1 103.000 1 8.89 9.78 8.37 7.37 6.32 5.48 4.17 3.10 2.45 7.24 85.3 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 8.86 10.09 8.88 7.86 6.78 5.89 4.48 3.33 2.62 7.69 86.1 GPS Position: Latitude = Longitude = Note: 4 1 299.000 1 8.76 9.48 8.37 7.52 6.61 5.83 4.62 3.56 2.98 7.33 87.5 GPS Position: Latitude = Longitude = Note: 5 1 402.000 1 8.72 11.17 9.81 8.63 7.37 6.36 4.87 3.70 3.06 8.40 88.3 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 501.000 \ 1 \ 8.86 \ 10.54 \ 9.29 \ 8.28 \ 7.09 \ 6.15 \ 4.73 \ 3.56 \ 2.85 \ 8.14 \ 87.5$ GPS Position: Latitude = Longitude = Note: 7 1 599.000 1 8.86 11.51 9.95 8.78 7.51 6.44 4.75 3.46 2.59 8.70 88.3 GPS Position: Latitude = Longitude = Note: 8 1 700.000 1 8.59 10.61 9.11 7.92 6.68 5.70 4.19 3.06 2.35 7.56 89.4 GPS Position: Latitude = Longitude = Note: 9 1 805.000 1 8.72 13.37 11.77 10.29 8.54 7.09 4.96 3.39 2.46 9.86 88.6 GPS Position: Latitude = Longitude = Note: 10 1 899.000 1 8.52 13.34 11.47 9.99 8.36 7.00 4.96 3.45 2.49 9.74 89.0 GPS Position: Latitude = Longitude = Note: 11 1 1000.000 1 8.45 12.56 10.93 9.53 7.97 6.73 4.87 3.44 2.52 9.14 88.6 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 8.44 15.01 13.29 11.54 9.62 8.04 5.66 3.89 2.79 11.44 88.3 GPS Position: Latitude = Longitude = Note 13 1 1200.000 1 8.40 12.87 11.18 9.71 8.12 6.81 4.88 3.45 2.50 9.36 87.2 GPS Position: Latitude = Longitude = Note: 14 1 1299.000 1 8.41 11.43 10.33 9.11 7.79 6.67 4.94 3.54 2.71 8.55 87.9 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 8.46 12.84 10.63 8.96 7.32 6.02 4.20 2.94 2.39 8.44 88.3 GPS Position: Latitude = Longitude = Note: $16 \ 1 \ 1500.000 \ 1 \ 8.50 \ 16.33 \ 14.26 \ 12.46 \ 10.36 \ 8.63 \ 6.07 \ 4.18 \ 3.31 \ 12.13 \ 87.9$ GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 3-30-2005 10:24:40 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Story S14SB Temp: 68 Operator: Colton/Denekas Comments: 1 1 0.000 1 9.63 15.26 13.29 11.63 9.75 8.19 5.82 4.07 2.91 11.18 82.4 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.83 13.05 11.21 9.81 8.20 6.83 4.78 3.32 2.51 9.56 83.1 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 9.05 13.21 11.29 9.63 7.76 6.26 4.20 2.78 2.02 9.42 81.3 GPS Position: Latitude = Longitude = Note: 4 1 298.000 1 8.96 14.88 12.88 11.23 9.25 7.61 5.36 3.88 3.16 11.01 82.4 GPS Position: Latitude = Longitude = Note: 5 1 404.000 1 8.66 15.54 13.29 11.47 9.49 7.88 5.54 3.83 3.06 11.10 81.3 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 501.000 \ 1 \ 8.86 \ 15.81 \ 13.33 \ 11.45 \ 9.37 \ 7.72 \ 5.41 \ 3.74 \ 3.13 \ 11.27 \ 80.6$ GPS Position: Latitude = Longitude = Note: 7 1 599.000 1 8.74 15.17 13.03 11.37 9.41 7.77 5.49 3.94 3.36 11.00 80.9 GPS Position: Latitude = Longitude = Note: 8 1 702.000 1 8.66 15.41 12.91 10.97 8.91 7.32 5.05 3.44 2.79 10.64 82.4 GPS Position: Latitude = Longitude = Note: 9 1 800.000 1 8.67 15.12 13.21 11.57 9.67 8.07 5.60 3.82 3.06 10.92 82.8 GPS Position: Latitude = Longitude = Note: 10 1 900.000 1 8.67 11.81 9.80 8.24 6.72 5.55 3.85 2.65 2.22 7.73 83.5 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 8.76 14.41 12.35 10.67 8.82 7.33 5.07 3.47 2.55 10.26 83.5 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 8.64 16.90 14.83 12.95 10.83 9.04 6.38 4.37 3.41 12.53 83.9 GPS Position: Latitude = Longitude = Note 13 1 1200.000 1 8.55 15.92 13.75 11.85 9.80 8.15 5.85 4.14 3.41 11.61 83.5 GPS Position: Latitude = Longitude = Note: 14 1 1301.000 1 8.50 14.78 13.24 11.53 9.60 7.97 5.58 3.89 3.22 10.75 84.2 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 8.65 15.22 13.58 11.78 9.75 8.11 5.70 3.94 3.14 10.80 84.2 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.61 13.08 11.22 9.51 7.72 6.30 4.28 2.87 2.36 9.05 84.6 GPS Position: Latitude = Longitude = Note:
MЗ Date-Time: 3-30-2005 11:11:32 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Story S27 Temp: 69 Operator: Colton/Denekas Comments: 1 1 0.000 1 8.49 10.57 9.30 8.20 7.06 6.13 4.63 3.45 2.76 7.85 82.8 GPS Position: Latitude = Longitude = Note: 2 1 100.000 1 8.69 15.01 12.92 11.19 9.24 7.66 5.31 3.59 2.70 10.98 82.8 GPS Position: Latitude = Longitude = Note: 3 1 200.000 1 8.43 15.56 13.86 12.03 9.93 8.21 5.72 3.92 3.09 11.71 83.9 GPS Position: Latitude = Longitude = Note: 4 1 306.000 1 8.52 14.88 13.50 11.84 9.88 8.25 5.77 3.96 3.21 10.87 85.3 GPS Position: Latitude = Longitude = Note: 5 1 405.000 1 8.56 18.13 16.06 13.99 11.58 9.52 6.46 4.27 3.19 13.71 86.4 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 501.000 \ 1 \ 8.51 \ 14.28 \ 12.46 \ 10.77 \ 8.88 \ 7.28 \ 4.90 \ 3.24 \ 2.18 \ 10.25 \ 86.1$ GPS Position: Latitude = Longitude = Note: 7 1 600.000 1 8.51 16.78 14.81 12.93 10.75 8.91 6.13 4.12 3.11 12.50 85.7 GPS Position: Latitude = Longitude = Note: 8 1 700.000 1 8.72 15.63 13.84 12.14 10.14 8.47 5.90 4.01 2.87 12.05 86.1 GPS Position: Latitude = Longitude = Note: 9 1 800.000 1 8.49 17.02 15.14 13.19 10.92 8.97 6.10 4.03 3.07 12.77 86.1 GPS Position: Latitude = Longitude = Note: 10 1 901.000 1 8.39 18.05 15.68 13.52 11.05 9.02 6.06 4.00 2.96 13.15 87.5 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 8.48 15.09 13.17 11.33 9.33 7.68 5.25 3.55 2.49 10.91 87.2 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 8.55 16.72 14.89 13.02 10.78 8.90 6.06 4.02 3.03 12.55 86.1 GPS Position: Latitude = Longitude = Note 13 1 1199.000 1 8.25 16.14 14.50 12.78 10.82 9.12 6.56 4.55 3.51 12.33 85.3 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 8.51 15.11 13.15 11.56 9.71 8.19 5.89 4.11 3.28 11.70 86.1 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 8.40 13.50 11.99 10.70 9.14 7.80 5.62 3.89 2.76 10.36 86.4 GPS Position: Latitude = Longitude = Note: 16 1 1503.000 1 8.31 17.54 15.61 13.81 11.67 9.93 7.15 4.96 3.82 13.47 86.4 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 12:29:48 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Tama E66 Temp: 31 Operator: bad Comments: 1 1 0.000 1 9.19 7.10 6.73 6.35 5.98 5.63 4.95 4.16 3.49 6.37 31.5 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 8.92 11.06 10.54 9.76 8.83 7.94 6.35 4.88 3.75 9.47 34.1 GPS Position: Latitude = Longitude = Note: 3 1 260.000 1 8.89 10.02 9.56 8.86 8.06 7.27 5.81 4.45 3.42 8.66 34.8 GPS Position: Latitude = Longitude = Note: 4 1 378.000 1 8.87 10.12 9.64 8.91 8.08 7.26 5.83 4.49 3.47 8.68 36.3 GPS Position: Latitude = Longitude = Note: 5 1 409.000 1 8.90 11.08 10.71 9.91 8.96 8.08 6.50 5.03 3.91 9.42 37.4 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 603.000 \ 1 \ 8.76 \ 11.25 \ 11.03 \ 10.24 \ 9.29 \ 8.31 \ 6.47 \ 4.66 \ 3.14 \ 9.38 \ 37.0$ GPS Position: Latitude = Longitude = Note: 7 1 617.000 1 8.90 9.23 8.79 8.14 7.40 6.73 5.53 4.37 3.45 7.89 37.4 GPS Position: Latitude = Longitude = Note: 8 1 700.000 1 8.90 10.20 9.83 9.06 8.15 7.31 5.87 4.57 3.58 8.69 37.4 GPS Position: Latitude = Longitude = Note: 9 1 801.000 1 8.65 11.11 10.92 10.14 9.13 8.15 6.37 4.75 3.54 9.42 36.6 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 8.82 10.25 9.92 9.19 8.32 7.50 6.07 4.77 3.77 8.91 37.4 GPS Position: Latitude = Longitude = Note: 11 1 1028.000 1 8.80 9.67 9.24 8.60 7.84 7.06 5.69 4.41 3.46 8.31 36.3 GPS Position: Latitude = Longitude = Note: 12 1 1101.000 1 8.85 9.36 9.04 8.43 7.68 6.96 5.65 4.37 3.38 8.19 37.0 GPS Position: Latitude = Longitude = Note 13 1 1203.000 1 8.91 6.87 6.73 6.21 5.59 5.00 3.99 3.10 2.45 5.81 37.4 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 8.89 8.52 8.24 7.69 7.03 6.36 5.11 3.91 3.00 7.39 39.2 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 8.66 9.21 9.01 8.40 7.65 6.91 5.57 4.33 3.34 7.90 39.6 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 8.79 8.84 8.47 7.95 7.36 6.77 5.66 4.52 3.58 7.95 38.1 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-13-2004 11:58:30 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Tama V18A Temp: 14 Operator: bad Comments: 1 1 0.000 1 9.21 5.70 5.36 4.93 4.44 3.97 3.14 2.38 1.83 4.72 28.9 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.17 8.46 7.76 6.96 6.05 5.24 3.91 2.86 2.16 6.58 30.0 GPS Position: Latitude = Longitude = Note: 3 1 202.000 1 9.20 8.87 8.18 7.28 6.23 5.34 3.87 2.82 2.11 6.91 30.0 GPS Position: Latitude = Longitude = Note: 4 1 388.000 1 9.11 8.85 8.11 7.24 6.21 5.32 3.91 2.84 2.16 6.97 30.4 GPS Position: Latitude = Longitude = Note: 5 1 398.000 1 9.21 9.43 8.62 7.66 6.56 5.58 4.04 2.89 2.16 7.19 31.1 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 500.000 \ 1 \ 9.17 \ 10.64 \ 9.71 \ 8.54 \ 7.23 \ 6.06 \ 4.21 \ 2.95 \ 2.17 \ 8.04 \ 30.8$ GPS Position: Latitude = Longitude = Note: 7 1 634.000 1 8.87 12.51 11.52 10.10 8.25 6.75 4.57 3.18 2.41 9.16 31.1 GPS Position: Latitude = Longitude = Note: 8 1 784.000 1 9.06 10.63 9.80 8.71 7.40 6.26 4.51 3.27 2.47 8.15 31.9 GPS Position: Latitude = Longitude = Note: 9 1 824.000 1 9.10 12.11 11.29 9.94 8.34 6.97 4.96 3.56 2.63 9.43 32.2 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 9.14 11.79 10.75 9.48 7.91 6.54 4.52 3.08 2.13 8.84 31.9 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 9.09 11.31 10.45 9.23 7.72 6.41 4.37 2.91 2.03 8.58 32.2 GPS Position: Latitude = Longitude = Note: 12 1 1204.000 1 9.02 13.88 12.99 11.51 9.58 7.86 5.27 3.48 2.38 10.60 33.7 GPS Position: Latitude = Longitude = Note 13 1 1204.000 1 9.09 9.88 9.30 8.38 7.30 6.28 4.59 3.23 2.28 8.00 33.3 GPS Position: Latitude = Longitude = Note: 14 1 1302.000 1 9.21 10.67 9.66 8.56 7.27 6.11 4.34 3.06 2.19 8.17 33.0 GPS Position: Latitude = Longitude = Note: 15 1 1401.000 1 9.07 10.15 9.31 8.24 7.00 5.90 4.18 2.90 2.03 7.90 33.0 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.22 8.77 7.55 6.62 5.50 4.55 3.10 2.11 1.51 6.77 34.4 GPS Position: Latitude = Longitude = Note:

Date-Time: 12-13-2004 12:15:16 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Tama V18B Temp: 29 Operator: bad Comments: 1 1 0.000 1 9.09 10.02 9.38 8.35 7.02 5.86 4.03 2.73 1.89 7.92 31.1 GPS Position: Latitude = Longitude = Note: 2 1 188.000 1 9.05 12.09 11.21 9.91 8.39 7.05 4.94 3.39 2.29 9.28 33.3 GPS Position: Latitude = Longitude = Note: 3 1 302.000 1 8.86 12.19 10.89 9.54 8.01 6.70 4.71 3.23 2.23 9.00 33.0 GPS Position: Latitude = Longitude = Note: 4 1 302.000 1 8.91 15.12 13.41 11.47 9.27 7.44 4.86 3.19 2.15 10.54 33.3 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 9.11 11.47 10.06 8.52 6.85 5.53 3.72 2.55 1.89 7.67 34.4 GPS Position: Latitude = Longitude = Note: 6 1 516.000 1 8.94 12.17 10.53 8.85 7.00 5.52 3.57 2.43 1.86 8.30 33.7 GPS Position: Latitude = Longitude = Note: 7 1 601.000 1 9.00 10.24 8.96 7.63 6.19 5.04 3.43 2.38 1.83 6.85 35.2 GPS Position: Latitude = Longitude = Note: 8 1 707.000 1 9.01 11.83 9.89 8.14 6.33 4.97 3.21 2.25 1.64 7.81 34.4 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 8.92 12.56 11.36 9.45 7.38 5.83 3.77 2.48 1.76 8.26 34.4 GPS Position: Latitude = Longitude = Note: 10 1 901.000 1 8.90 9.67 9.18 7.97 6.59 5.43 3.77 2.62 1.91 7.04 31.9 GPS Position: Latitude = Longitude = Note: 11 1 1008.000 1 9.02 9.45 8.68 7.71 6.57 5.59 4.06 2.92 2.19 7.28 32.2 GPS Position: Latitude = Longitude = Note: 12 1 1116.000 1 9.14 9.03 8.30 7.17 5.97 4.97 3.52 2.54 1.94 6.55 32.6 GPS Position: Latitude = Longitude = Note: 13 1 1200.000 1 9.05 9.42 8.70 7.64 6.41 5.33 3.67 2.51 1.83 7.07 33.3 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 8.97 9.85 8.95 7.82 6.47 5.32 3.63 2.48 1.85 7.22 33.0 GPS Position: Latitude = Longitude = Note: 15 1 1400.000 1 8.90 7.78 7.29 6.50 5.54 4.68 3.34 2.34 1.75 6.01 34.4 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.80 8.22 8.17 7.27 6.23 5.31 3.85 2.70 1.97 6.39 33.3 GPS Position: Latitude = Longitude = Note:

MЗ

MЗ Date-Time: 12-15-2004 7:47:29 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Winnebago R60 Temp: 17 Operator: COLTON / DENEKAS Comments: RTE R60 SOUTHBOUND 1 1 0.000 1 9.41 3.86 3.62 3.39 3.17 2.94 2.51 2.05 1.69 3.37 25.3 GPS Position: Latitude = Longitude = Note: 2 1 101.000 1 9.40 4.60 4.44 4.15 3.86 3.59 3.05 2.48 1.93 4.05 25.3 GPS Position: Latitude = Longitude = Note: 3 1 202.000 1 9.40 4.47 4.34 4.08 3.79 3.50 2.97 2.42 1.95 3.94 24.9 GPS Position: Latitude = Longitude = Note: 4 1 287.000 1 9.32 4.36 4.20 3.94 3.65 3.35 2.82 2.29 1.81 3.76 24.9 GPS Position: Latitude = Longitude = Note: 5 1 400.000 1 9.29 4.34 4.17 3.90 3.58 3.28 2.72 2.17 1.70 3.75 25.3 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 504.000 \ 1 \ 9.21 \ 4.34 \ 4.17 \ 3.91 \ 3.60 \ 3.29 \ 2.73 \ 2.17 \ 1.74 \ 3.83 \ 25.3$ GPS Position: Latitude = Longitude = Note: 7 1 607.000 1 9.14 4.98 4.90 4.58 4.22 3.88 3.22 2.57 2.07 4.42 26.4 GPS Position: Latitude = Longitude = Note: 8 1 715.000 1 9.30 4.54 4.38 4.15 3.86 3.58 3.08 2.55 2.10 4.10 26.0 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 9.07 4.64 4.44 4.17 3.83 3.51 2.96 2.37 1.93 4.15 26.4 GPS Position: Latitude = Longitude = Note: 10 1 916.000 1 9.17 5.42 5.14 4.81 4.41 4.05 3.42 2.76 2.21 5.16 26.0 GPS Position: Latitude = Longitude = Note: 11 1 1001.000 1 9.36 6.83 6.48 6.03 5.54 5.15 4.41 3.64 2.95 6.25 25.3 GPS Position: Latitude = Longitude = Note: 12 1 1092.000 1 9.32 5.23 5.08 4.80 4.51 4.23 3.69 3.11 2.62 4.71 25.6 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 9.11 5.57 5.47 5.18 4.87 4.58 4.01 3.40 2.86 5.12 26.0 GPS Position: Latitude = Longitude = Note: 14 1 1303.000 1 9.19 5.16 5.02 4.76 4.48 4.21 3.74 3.11 2.50 4.63 26.0 GPS Position: Latitude = Longitude = Note: 15 1 1415.000 1 9.04 6.07 6.00 5.74 5.45 5.17 4.59 3.88 3.30 5.56 26.4 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 9.14 6.25 6.13 5.84 5.44 5.12 4.43 3.72 3.11 5.63 26.4 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 16: 6:33 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Winnebago R34 Temp: 23 Operator: bad Comments: 1 1 0.000 1 9.17 8.94 8.30 7.60 6.78 6.02 4.63 3.44 2.38 7.33 32.2 GPS Position: Latitude = Longitude = Note: 2 1 103.000 1 9.14 8.87 8.46 7.49 6.57 5.78 4.48 3.42 2.66 7.07 32.6 GPS Position: Latitude = Longitude = Note: 3 1 204.000 1 9.06 8.50 7.92 7.18 6.43 5.79 4.63 3.62 2.85 6.95 32.6 GPS Position: Latitude = Longitude = Note: 4 1 306.000 1 8.99 8.51 7.73 6.79 5.89 5.21 3.99 3.02 2.30 6.49 33.3 GPS Position: Latitude = Longitude = Note: 5 1 401.000 1 8.74 8.16 7.31 6.54 5.73 5.09 3.93 2.99 2.28 6.37 33.0 GPS Position: Latitude = Longitude = Note: $6 \ 1 \ 501.000 \ 1 \ 8.84 \ 10.90 \ 10.42 \ 9.02 \ 7.59 \ 6.49 \ 4.72 \ 3.47 \ 2.64 \ 8.27 \ 33.0$ GPS Position: Latitude = Longitude = Note: 7 1 613.000 1 9.38 9.26 8.85 8.01 7.06 6.21 4.79 3.61 2.78 7.43 32.2 GPS Position: Latitude = Longitude = Note: 8 1 792.000 1 8.94 12.12 11.29 9.91 8.51 7.31 5.37 3.90 3.01 9.44 31.9 GPS Position: Latitude = Longitude = Note: 9 1 802.000 1 9.38 7.84 7.36 6.77 6.06 5.43 4.28 3.25 2.48 6.59 32.2 GPS Position: Latitude = Longitude = Note: 10 1 902.000 1 9.34 7.77 7.19 6.45 5.70 5.06 3.98 3.05 2.36 6.21 32.6 GPS Position: Latitude = Longitude = Note: 11 1 1007.000 1 9.40 5.70 5.20 4.78 4.33 3.95 3.26 2.63 2.15 4.63 30.8 GPS Position: Latitude = Longitude = Note: 12 1 1100.000 1 9.07 6.51 6.07 5.57 5.06 4.61 3.81 3.06 2.51 5.39 31.5 GPS Position: Latitude = Longitude = Note 13 1 1210.000 1 9.30 7.45 6.99 6.48 5.91 5.35 4.33 3.38 2.61 6.26 31.1 GPS Position: Latitude = Longitude = Note: 14 1 1303.000 1 9.02 6.99 6.64 6.12 5.65 5.22 4.13 3.15 2.45 5.74 33.0 GPS Position: Latitude = Longitude = Note: 15 1 1397.000 1 8.99 6.63 6.31 5.76 5.21 4.73 3.86 3.07 2.43 5.50 31.9 GPS Position: Latitude = Longitude = Note: 16 1 1500.000 1 9.07 7.48 7.04 6.50 5.91 5.40 4.32 3.33 2.57 6.39 32.2 GPS Position: Latitude = Longitude = Note:

MЗ Date-Time: 12-14-2004 16:28:16 Sensors: 096011F04 096012F04 096013F04 096014F04 096015F04 096016F04 096017F04 096018F04 096019F04 Weight/spring: 3 Location: Winnebago R34B Temp: 25 Operator: bad Comments: 1 1 0.000 1 9.14 7.34 6.00 5.48 4.94 4.43 3.61 2.85 2.28 5.50 30.8 GPS Position: Latitude = Longitude = Note: 2 1 104.000 1 9.00 6.56 5.96 5.35 4.78 4.26 3.36 2.54 1.90 5.48 32.2 GPS Position: Latitude = Longitude = Note: 3 1 209.000 1 8.90 6.63 6.22 5.71 5.17 4.67 3.79 2.99 2.34 6.04 31.5 GPS Position: Latitude = Longitude = Note: 4 1 301.000 1 8.92 8.28 7.79 7.19 6.54 5.96 4.88 3.86 3.00 7.02 31.1 GPS Position: Latitude = Longitude = Note: 5 1 434.000 1 8.94 7.06 6.48 6.41 5.88 5.34 4.38 3.39 2.60 6.32 31.5 GPS Position: Latitude = Longitude = Note: $6\ 1\ 502.000\ 1\ 8.89\ 7.83\ 7.43\ 6.87\ 6.29\ 5.73\ 4.72\ 3.71\ 2.90\ 6.74\ 31.5$ GPS Position: Latitude = Longitude = Note: 7 1 611.000 1 8.91 5.88 5.72 5.32 4.92 4.60 3.88 3.12 2.51 5.00 31.1 GPS Position: Latitude = Longitude = Note: 8 1 701.000 1 8.91 7.29 6.95 6.43 5.86 5.33 4.36 3.42 2.69 6.25 30.4 GPS Position: Latitude = Longitude = Note: 9 1 807.000 1 8.87 7.66 7.23 6.69 6.07 5.51 4.45 3.44 2.65 6.62 31.5 GPS Position: Latitude = Longitude = Note: 10 1 900.000 1 8.84 7.42 7.05 6.53 5.96 5.46 4.48 3.57 2.86 6.33 31.1 GPS Position: Latitude = Longitude = Note: 11 1 997.000 1 8.61 8.01 7.91 7.47 7.02 6.59 5.31 4.09 3.61 6.78 32.2 GPS Position: Latitude = Longitude = Note: 12 1 1113.000 1 8.90 7.82 7.56 7.00 6.34 5.76 4.64 3.58 2.68 6.71 31.1 GPS Position: Latitude = Longitude = Note 13 1 1202.000 1 8.74 7.17 6.69 6.13 5.54 4.96 3.95 3.03 2.27 5.91 30.8 GPS Position: Latitude = Longitude = Note: 14 1 1300.000 1 8.86 7.94 7.39 6.74 6.01 5.36 4.16 3.10 2.27 6.44 31.1 GPS Position: Latitude = Longitude = Note: 15 1 1405.000 1 8.80 6.15 5.89 5.45 4.97 4.53 3.72 2.91 2.30 5.14 31.5 GPS Position: Latitude = Longitude = Note: 16 1 1501.000 1 8.85 6.80 6.19 5.68 5.06 4.51 3.53 2.65 1.95 5.76 31.1 GPS Position: Latitude = Longitude = Note:

APPENDIX F. FWD DEFLECTION AND MODULI

Boone198

9 8 Log(Modulus, ksi) 7 ● HMA ▼ CIR - FND 6 5 4 3 0 1 2 3 5 8 9 10 11 12 13 14 15 16 17 0 4 6 7 Drops

BooneE52

ButlerT16

CalhounIA175

CarrollN58S

CarrollNofB

CerroGodoSS

CerroGodoB43

Offset of Sensors (inch)

ClintonE50

ClintonZ30

DelawareUS20

GreenelA144

HardinD35

HarrisonIA44

JacksonUS61

MontgomeryIA48

MuscatineF70

MuscatineG28

MuscatineG28E

MuscatineY14S

MuscatineY14N

StoryS14SB

StoryS14NB

TamaV18a

TamaV18b

WinnebagoR34

WinnebagoR34b

WinnebagoR60

APPENDIX G. SAS PROGRAM CODE AND SELECTED OUTPUT

G.1. SAS code for single-order models

```
## read external files (all 24 CIR roads, low-traffic roads, and high-traffic roads)
PROC IMPORT OUT= MYLIB.Cirsas
DATAFILE= "C: \Documents and Settings\chdong\Desktop\Allcir.csv"
DBMS=CSV REPLACE;
CCTDMUEC VEC;
    GETNAMES=YES:
    DATAROW=2;
RUN;
PROC IMPORT OUT= MYLIB.Cirlow
DATAFILE= "C:\Documents and Settings\chdong\Desktop\Cirlow.csv"
DBMS=CSV REPLACE;
GETNAMES=YES;
GETNAMES=YES;
    DATAROW=2;
RIIN
PROC IMPORT OUT= MYLIB. Cirhigh
DATAFILE= "C: \Documents and Settings\chdong\Desktop\Cirhigh.csv"
DBMS=CSV REPLACE;
    GETNAMES=YES:
    DATAROW=2:
RUN
## model selection for all 24 CIR roads
proc reg corr data=Mylib.Cirsas;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=f sle=0.05;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=b sls=0.1;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=stepwise sle=0.15 sls=0.15;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp;
title 'CIR: Model Selection';
run:
## develop the regression model for all 24 CIR roads based on model selection results
proc reg corr data=Mylib.Cirsas;
model RelativePCI = CumulativeTraffic CIRModulus Va;
title 'Single-order model: all 24 CIR Roads';
run<sup>.</sup>
## model selection for low-traffic roads
proc reg corr data=Mylib.Cirlow;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=f sle=0.05;
                       model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=b sls=0.1;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=stepwise sle=0.15 sls=0.15;
model RelativePCl = CumulativeTraffic ClRModulus FNDModulus Va IDTwet G S
Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp;
title 'CIR: Model Selection';
run;
## develop the regression model for low-traffic roads based on model selection results
proc reg corr data=Mylib.Cirlow;
model RelativePCI = CIRModulus IDTwet S;
title 'Single-order model: low traffic CIR Roads';
run:
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=b sls=0.1;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=stepwise sle=0.15 sls=0.15;
                       model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=rsquare sse cp;
Aggregate/selection=rsquare sizePCI = CumulativeTraffic CIRModulus FNDModulus Va IDTwet G S
Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp;
title 'CIR: Model Selection';
run:
```

G-1

run;

G.2. SAS code for higher order models

```
## read external files (all 24 CIR roads, low-traffic roads, and high-traffic roads)
PROC IMPORT OUT= MYLIB. Cirsas
DATAFILE= "C: \Documents and Settings\chdong\Desktop\Allcir.csv"
    DBMS=CSV REPLACE;
GETNAMES=YES;
    DATAROW=2;
RUN
PROC IMPORT OUT= MYLIB.Cirlow
DATAFILE= "C:\Documents and Settings\chdong\Desktop\Cirlow.csv"
DBMS=CSV REPLACE;
GETNAMES=YES;
    DATAROW=2;
RUN:
PROC IMPORT OUT= MYLIB. Cirhigh
DATAFILE= "C: \Documents and Settings\chdong\Desktop\Cirhigh.csv"
DBMS=CSV REPLACE;
GETNAMES=YES;
    DATAROW=2;
RUN
## model selection for all 24 CIR roads proc reg corr data=Mylib.Allcir;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=f sle=0.05;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=b sl s=0.1;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=stepwise sl e=0.15 sl s=0.15;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=rsquare sse cp;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp;
title 'CIR: Model Selection';
run;
title 'Higher-order model: all 24 CIR Roads';
run;
## model selection for low-traffic roads
proc reg corr data=Mylib.Cirlow;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/sel ecti on=f sl e=0.05;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=b sls=0.1;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=stepwise sle=0.15 sls=0.15;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=rsquare sse cp;
model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S
Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp;
title 'CIR: Model Selection';
run
## develop the regression model for low-traffic roads based on model selection results
proc reg corr data=Mylib.Cirlow;
                        model RelativePCI = CIRModulus IDTwet2 S
                        title 'Higher-order model: low traffic CIR Roads';
run:
Aggregate/sel ection=b_sls=0.05;

model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S

Aggregate/sel ection=b_sls=0.1;
```

Aggregate/selection=rsquare sec; model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S Aggregate/selection=rsquare sec; model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S Aggregate/selection=rsquare sec; model RelativePCI = CumulativeTraffic CIRModulus FNDModulus Va3 IDTwet2 G2 S Aggregate/selection=rsquare start=1 stop=4 best=2 sse mse aic cp; title 'CIR: Model Selection';

run;

run;

G.3. Selected SAS output for single-order models

CIR: Model Selection for all 24 CIR roads Summary of Forward Selection Number Partial Model Vari ablie Vars In R-Square R-Square C(p) F Value Pr > F Step Entered Label CI RModul us 1 0.2274 0.2274 10.3459 6.18 0.0214 2 0.2367 0.4641 3.3560 8.83 0.0075 CI RModul us 1 2 G G _____ -----Summary of Backward Elimination Vari abl e Number Partial Model Vars In R-Square R-Square C(p) F Value Pr > F Step Removed Label 1 2 S S Aggregate IDTwet Aggregate 2 3 4 5 IDTwet FNDModulus FNDModul us G ------Summary of Stepwise Selection Number Partial Model Label Vars In R-Square R-Square C(p) Vari abl e Vari abl e Step Entered Removed CIRModulus 1 0.2274 0.2274 10.3459 2 0.2367 0.4641 3.3560 CumulativeTraffic 3 0.0608 0.5249 3.0450 1 CI RModul us 2 G 3 CumulativeTraffic G R-Square Selection Method Number in Model R-Square C(p) AI C MSE SSE Variables in Model 0. 2274 10. 3459 104. 8383 87. 81632 1844. 14266 CIRModulus 0. 1199 14. 4281 107. 8340 100. 03236 2100. 67951 CumulativeTraffic 1 98. 4255 63. 96030 1279. 20601 CI RModul us G 71. 75256 1435. 05121 CI RModul us S 2 0. 4641 3. 3560 0. 3988 5. 8360 2 101.0696 59.21005 1124.99101 CumulativeTraffic CIRModulus 3 0.5287 2.9020 97.4708 Va 59.68288 1133.97469 Cumul ati veTraffic CIRModul us 3 0.5249 3.0450 97.6538 G 57.13687 1028.46371 CumulativeTraffic CIRModulus G Aggregate 58.19685 1047.54328 CumulativeTraffic CIRModulus 0.5691 3.3660 97.4075 4 4 0.5611 3.6696 97.8303 Va G Single-order model: all 24 CIR Roads Analysis of Variance Sum of Mean DF Squares Square F Value Pr > F Source 1312. 31479 437. 43826 Model 7.77 0.0012
 S
 1312.314/9
 43

 Error
 20
 1125.68521
 5

 Corrected Total
 23
 2438.00000
 56. 28426 Root MSE 7.50228 R-Square 0.5383 Dependent Mean 0 Adj R-Sq 0.4690 Coeff Var Parameter Estimates Parameter Standard DF Estimate Error t Value Pr > |t| Vari abl e Label Intercept Intercept 1 -8.35954 6.24829 -1.34 0.1959 CumulativeTraffic CumulativeTraffic 1 -0.64808 0.24254 -2.67 0.0146

1 -1. 33048 0. 38058 -3. 50 2. 05873 0. 65330 3. 15 0. 0050 CIRModulus CIRModulus Va Va 1 -3.50 0.0023

CIR: Model Selection for low-traffic roads

The REG Procedure Model: MODEL1 Dependent Variable: RelativePCI RelativePCI

8

No variable met the 0.0500 significance level for entry into the model.

.....

Summary of Backward Elimination

Number Partial Model Vari abl e Label Vars In R-Square R-Square C(p) F Value Pr > F Step Removed 2 3 4 5 6 7 Aggregate Va Va IDTwet I

CI RModul us

CIR: Model Selection

The REG Procedure Model: MODEL3 Dependent Variable: RelativePCI RelativePCI

No variable met the 0.1500 significance level for entry into the model.

R-Square Selection Method

Number Model	in R-Squar	e C(p)	AI C	MSE	SSE Variables in Model
1 1	0. 1748 0. 1257	-2.6273 -2.3079	50. 2230 50. 9160	56. 49990 59. 85865	
2 2	0. 3586 0. 3197	-1.8243 -1.5708	49. 1984 49. 9056	48. 79111 51. 75305	
3	0. 4843 0. 4643	-0. 6423 -0. 5120	48.5819 49.0390	44. 13673 45. 85012	
4	0. 4971	1. 2744	50. 2804	49.19050 IDTwet S	344.33348 CumulativeTraffic CIRModulus
4	0. 4951	1. 2874	50. 3281	49.38619	345.70331 CIRModulus Va IDTwet S

_____ Single-order model: Iow traffic CIR Roads

Analysis of Variance

Sum of Mean F Squares Square F Value Pr > F Source DF 331. 57286110. 52429353. 0938044. 1367311684. 66667 Model 3 2.50 0.1331 8 Error Corrected Total

Root MSE 6.64355 R-Square 0.4843 Dependent Mean 4.66667 Adj R-Sq 0.2909 Coeff Var 142.36174

Parameter Estimates

Parameter Standard DF Estimate Error t Value Pr > |t| Vari abl e Label Intercept Intercept 1 -14.99778 10.12637 -1.48 0.1769 CIRModulus CIRModulus 1 -1.33289 0.63001 -2.12 0.0673 IDTwet IDTwet 1 0.67914 0.39265 1.73 0.1219 S S 1 2.09766 1.15291 1.82 0.1063

CIR: Model Selection for high-traffic roads

Summary of Forward Selection								
Variable Number Partial Model Step Entered Label Vars In R-Square R-Square C(p) F Value Pr > F								
1 CI RModul us CI RModul us 1 0. 4152 0. 4152 -1. 0161 6. 39 0. 0323								
Summary of Backward Elimination								
Variable - Number Partial Model Step Removed Label Vars In R-Square R-Square C(p) F Value Pr > F								
1 IDTwet IDTwet 7 0.0019 0.8026 7.0196 0.02 0.9015 2 Aggregate Aggregate 6 0.0079 0.7947 5.1003 0.12 0.7520								
3 G G G 5 0.0366 0.7581 3.4751 0.71 0.4458 4 S S 4 0.0584 0.6997 2.0731 1.21 0.3218								
5 FNDModulus FNDModulus 3 0.0673 0.6324 0.7613 1.34 0.2904 6 CumulativeTraffic CumulativeTraffic 2 0.1164 0.5160 -0.0472 2.22 0.1801 7 Va Va 1 0.1008 0.4152 -1.0161 1.67 0.2329								
Summary of Stepwise Selection Variable Variable Number Partial Model								
Step Entered Removed Label Vars In R-Square R-Square C(p)								
1 CI RModul us CI RModul us 1 0. 4152 0. 4152 -1. 0161 2 S S 2 0. 1415 0. 5567 -0. 4636								
R-Square Selection Method								
Number in Model R-Square C(p) AIC MSE SSE Variables in Model								
1 0. 4152 -1. 0161 48. 5757 70. 31624 632. 84617 CI RModul us								
1 0. 3077 0. 0844 50. 4326 83. 24737 749. 22629 G 2 0. 5567 -0. 4636 47. 5294 59. 97055 479. 76442 CI RModul us S								
2 0. 5518 -0. 4139 47. 6492 60. 62725 485. 01803 CI RModul us G								
3 0. 6609 0. 4697 46. 5805 52. 42094 366. 94661 CI RModul us FNDModul us S 3 0. 6376 0. 7081 47. 3115 56. 02289 392. 16026 CI RModul us FNDModul us G								
4 0.6997 2.0731 47.2453 54.16700 325.00200 CumulativeTraffic CIRModulus FNDModulus Va								
4 0.6898 2.1744 47.6021 55.95280 335.71682 CIRModulus FNDModulus S Aggregate								
Single-order model: high traffic CIR Roads								
Analysis of Variance								
Sum of Mean Source DF Squares Square F Value Pr > F								
Model 3 828.16702 276.05567 5.49 0.0242 Error 8 402.49965 50.31246								
Corrected Total 11 1230. 66667								
Root MSE 7.09313 R-Square 0.6729 Dependent Mean -4.66667 Adj R-Sq 0.5503 Coeff Var -151.99559								
Parameter Estimates								
Parameter Standard								
Variable Label DF Estimate Error t Value Pr > t Intercept Intercept 1 -8.35416 9.22017 -0.91 0.3914								
CumulativeTraffic CumulativeTraffic 1 -0.84438 0.53448 -1.58 0.1528 CIRModulus CIRModulus 1 -1.56898 0.49298 -3.18 0.0129 Va Va 1 2.37256 1.02245 2.32 0.0489								

G.4. Selected SAS output for higher order models

CIR: Model Selection for all 24 CIR roads Summary of Forward Selection Number Partial Model Vari ablie Vars In R-Square R-Square C(p) F Value Pr > F Step Entered Label
 CIRModulus
 CIRModulus
 1
 0.2274
 0.2274
 11.0875
 6.18
 0.0214

 Va3
 Va3
 2
 0.1717
 0.3991
 6.4017
 5.71
 0.0268

 CumulativeTraffic
 3
 0.1863
 0.5854
 1.1458
 8.54
 0.
 1 2 3 8.54 0.0087 Summary of Backward Elimination Number Partial Model Vars In R-Square R-Square C(p) F Value Pr > F Vari abl e Step Removed Label
 2
 7
 0.0024
 0.6381
 7.0920
 0.09
 0.7662

 Aggregate
 6
 0.0032
 0.6349
 5.2163
 0.13
 0.7211

 IDTwet2
 5
 0.0116
 0.6234
 3.6665
 0.51
 0.4868

 4
 0.0121
 0.6113
 2.1372
 0.55
 0.4702

 FNDModul us
 3
 0.0259
 0.5854
 1.1458
 1.20
 0.2879
 G2 G2 1 G2 Aggregate IDTwet2 2 3 S 4 S FNDModul us 5 Summary of Stepwise Selection Number Partial Model Label Vars In R-Square R-Square C(p) Vari abl e Vari abl e Step Entered Removed 1 CI RModul us 2 Va3 CIRModulus 1 0.2274 0.2274 11.0875 3 2 0.1717 0.3991 6.4017 CumulativeTraffic 3 0.1863 0.5854 1.1458 Va3 3 CumulativeTraffic R-Square Selection Method Number in Model R-Square C(p) AI C MSE SSE Variables in Model 104.8383 87.81632 1844.14266 CIRModulus 107.8340 100.03236 2100.67951 CumulativeTraffic 0.2274 11.0875 0.1199 15.2730 1 71. 71750 1434. 35005 CI RModul us Va3 71. 75256 1435. 05121 CI RModul us S 2 0. 3991 6. 4017 0. 3988 6. 4131 101.0584 2 101.0696 3 0.5854 1.1458 52.08521 989.61902 CumulativeTraffic CIRModulus 94.5220 Va3 3 0.5156 3.8632 98.0997 60.85136 1156.17580 Cumul ati veTraffic CI RModul us S 0.6113 2.1372 95.0384 $51,\,54452$ $\,$ 927, 80135 CumulativeTraffic CIRModulus FNDModulus Va3 $\,$ 4 4 0.5934 2.8334 96.0726 53.91508 970.47145 CumulativeTraffic CIRModulus Va3 S Analysis of Variance Sum of Mean Square F Value Pr > F Source DF Squares 1484.26099 Δ 371.06525 7.39 0.0009 Model 953. 73901 50. 19679 23 2438. 00000 Error 19 Corrected Total Root MSE 7.08497 R-Square 0.6088 Dependent Mean 0 Adj R-Sq 0.5264 Coeff Var Parameter Estimates Parameter Standard DF Estimate Error t Value Pr > |t| Vari abl e Label 0.4346

CIR: Model Selection for low-traffic roads								
The REG Procedure								
Model: MODEL1 Dependent Variable: RelativePCI RelativePCI								
No variable met the 0.0500 significance level for entry into the model.								
Summary of Backward Elimination								
Variable Number Partial Model								
Step Removed Label Vars In R-Square R-Square C(p) F Value Pr > F								
1 CumulativeTraffic CumulativeTraffic 7 0.0016 0.5399 7.0103 0.01 0.9257 2 Va3 Va3 6 0.0022 0.5376 5.0248 0.02 0.8960								
2 Va3 Va3 6 0.0022 0.5376 5.0248 0.02 0.8960 3 FNDModul us FNDModul us 5 0.0030 0.5346 3.0445 0.03 0.8639 4 Aggregate 4 0.0030 0.5317 1.0641 0.04 0.8510 5 G2 G2 3 0.0059 0.5258 -0.8976 0.09 0.7760								
5 G2 G2 G2 3 0.0059 0.5258 -0.8976 0.09 0.7760								
The REG Procedure Model: MODEL3								
Dependent Vari able: Rel ati vePCI Rel ati vePCI								
No variable met the 0.1500 significance level for entry into the model.								
R-Square Selection Method								
Number in Madel D. Savara (/r) Alc. NSE SSE Variables in Madel								
Model R-Square C(p) AIC MSE SSE Variables in Model 1 0.1312 -2.3161 50.8407 59.48412 594.84121 IDTwet2								
1 0. 1257 -2. 2803 50. 9160 59. 85865 598. 58650 Cumul ativeTraffic								
1 0. 1312 -2. 3161 50. 8407 59. 48412 594. 84121 IDTwet2 1 0. 1257 -2. 2803 50. 9160 59. 85865 598. 58650 Cumul ati veTraffic 2 0. 3586 -1. 8040 49. 1984 48. 79111 439. 11995 Cumul ati veTraffic 2 0. 3239 -1. 5768 49. 8314 51. 43389 462. 90504 CI RModul us								
3 0.5258 -0.8976 47.5749 40.58390 324.67117 CIRModulus IDTwet2 S 3 0.4669 -0.5121 48.9805 45.62739 365.01910 CIRModulus Va3 IDTwet2								
4 0.5317 1.0641 49.4258 45.80905 320.66338 CIRModulus IDTwet2 G2 S 4 0.5299 1.0753 49.4697 45.97675 321.83726 CIRModulus IDTwet2 S Aggregate								
Anal ysis of Variance								
Sum of Mean Source DF Squares Square F Value Pr > F								
Model 3 359.99550 119.99850 2.96 0.0979 Error 8 324.67117 40.58390 Corrected Total 11 684.66667								
Corrected Total 11 684.66667								
Root MSE 6.37055 R-Square 0.5258								
Dependent Mean 4.66667 Ådj R-Sq 0.3480 Coeff Var 136.51177								
Parameter Estimates								
Parameter Standard								
Variable Label DF Estimate Error t Value Pr > t								
Intercept Intercept 1 5.27909 5.34823 0.99 0.3525 CIRModulus CIRModulus 1 -1.53046 0.61336 -2.50 0.0372 IDTwet2 IDTwet2 1.5280.12310 1297.56314 -1.99 0.0820								
IDTwet2 IDTwet2 1 -2580.12310 1297.56314 -1.99 0.0820 S S 1 2.45289 1.13455 2.16 0.0626								
CIR: Model Selection for high-traffic roads								
Summary of Forward Selection								
Variable Number Partial Model Step Entered Label Vars In R-Square R-Square C(p) F Value Pr > F								
1 CI RModul us CI RModul us 1 0. 4152 0. 4152 9. 1698 6. 39 0. 0323								
Summary of Backward Elimination								
Summary of Backward Elimination Variable Number Partial Model								

Step Removed		Label V		; In R-Square R-Square C(p) F Value Pr > F						
1 FNDModulus FNDModulus 2 Aggregate Aggregate 3 IDTwet2 IDTwet2		dul us ate 5	5 7 0.0093 0.9184 7.2572 0.26 0.6625 6 0.0304 0.8880 6.0965 1.12 0.3684 5 0.0268 0.8612 4.8368 0.96 0.3835							
Summary of Stepwise Selection										
Variable Variable Number Partial Model Step Entered Removed Label Vars In R-Square R-Square C(p)										
1 CIRN 2 S	1 CI RModul us CI RModul us 1 0. 4152 0. 4152 9. 1698 2 S S 2 0. 1415 0. 5567 7. 2584									
R-Square Selection Method										
Numberir Model R		e C(p)	AI C	MSE SSE Variables in Model						
1 C). 1782	9. 1698 15. 7221	52.3178	70. 31624 632. 84617 CI RModul us 98. 80957 889. 28614 S						
2 0). 5567	7. 2584 8. 0801	47.5294	59. 97055 479. 76442 CI RModul us S 63. 99049 511. 92394 CI RModul us Va3						
3 0). 6905	5. 5592	45. 5780	47.85480 334.98360 CumulativeTraffic CIRModulus						
3 C	0. 6609	6. 3758	46. 5805	Va3 52. 42094 366. 94661 CI RModul us FNDModul us S						
4 C). 7654	5. 4869	44. 5287	42.31368 253.88207 CumulativeTraffic CIRModulus						
4 C). 7621	5. 5771	44. 6806	Va3 IDTwet2 42.90206 257.41235 CumulativeTraffic CIRModulus FNDModulus Va3						

Analysis of Variance

Source	S DF	um of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 8		43.85349	6.69	0. 0143

 Root MSE
 6. 62220
 R-Square
 0. 7149

 Dependent Mean
 -4. 66667
 Adj
 R-Sq
 0. 6080

 Coeff Var
 -141. 90422
 -141. 90422
 -141. 90422

Parameter Estimates

Parameter Standard Variable Label DF Estimate Error t Value Pr > |t|

 Intercept
 Intercept
 1
 6. 61065
 6. 98629
 0. 95
 0. 3717

 Cumul ati veTraffic
 1
 -1. 00656
 0. 52050
 -1. 93
 0. 0892

 CI RModul us
 1
 -1. 32420
 0. 47354
 -2. 80
 0. 0233

 Va3
 1
 0. 00865
 0. 00319
 2. 71
 0. 0266