Practices and Lessons Learned For Cold and Hot In-place Recycling

FHWA is the source for all images unless otherwise noted.

U.S. Department of Transportation Federal Highway Administration Tim Aschenbrener, P.E. Federal Highway Administration Northeastern States Materials Engineers' Association Providence, Rhode Island October 24, 2023

Disclaimers

U.S. Department of Transportation Federal Highway Administration

- This material is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange under cooperative agreement No. 693JJ31850010. The U.S. Government assumes no liability for the use of the information.
- The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this material only because they are considered essential to the objective of the material. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.
- None of the AASHTO and ASTM specifications mentioned in this presentation are required under Federal requirements.

2

Abbreviations & Acronyms

- AASHTO American Association of State Highway and Transportation Officials
- ARRA Asphalt Recycling and Reclaiming Association
- CCPR Cold Central Plant Recycling
- CIR Cold In-place Recycling
- DDIAPT Demonstration and Deployment of Innovative Asphalt Pavement Technologies
- DOT Department of Transportation
- FDR Full-depth Reclamation

- FHWA Federal Highway Administration
- FLH Federal Lands Highway
- GTR Ground Tire Rubber
- HIR Hot In-place Recycling
- HMA Hot Mix Asphalt
- INDOT Indiana DOT
- IS Information Series
- ITS Indirect Tensile Strength
- ME Mechanistic Empirical
- NAPA National Asphalt Pavement Association

Abbreviations & Acronyms

- NCHRP National Cooperative Highway Research Program
- NMDOT New Mexico DOT
- NP National Park
- NYSDOT New York State DOT
- PCR Pavement Condition Rating
- PG Performance Grade
- PM Polymer Modified
- QA Quality Assurance

- QC Quality Control
- QCP Quality Control Plan
- RAP Reclaimed Asphalt Pavement
- RAS Recycled Asphalt Shingles

- SCDOT South Carolina DOT
- TSR Tensile Strength Ratio
- UCS Unconfined Compressive Strength
- VDOT Virginia DOT

Outline

2

U.S. Department of Transportation Federal Highway Administration

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

Image Source: Adam Hand

DDIAPT Innovation Area:

Resource Responsible use of Materials for Flexible Pavement Systems

U.S. Department of Transportation Federal Highway Administration

Innovation Area	Task	Торіс	Tech Brief or Report	FHWA Document
Resource Responsible use	B.1	High Reclaimed Asphalt Pavement (RAP) Mixtures	Resource Responsible Use of Reclaimed Asphalt Pavement in Asphalt Mixtures	FHWA-HIF-22-003
of Materials for Flexible Payoment	B.1.2	Cold & Hot In-place Recycling	Asphalt Pavement Recycling Technologies	FHWA-HIF-23-036
Pavement Systems	B.2	Reclaimed Asphalt Shingles (RAS) Modified Binders and Mixtures	Practices and Lessons Learned when Using Reclaimed Asphalt Shingles in Asphalt Mixtures	FHWA-HIF-22-001
	B.3	Asphalt Rubber-Modified Binders	Effective Use of GTR Modified Asphalt Binder in Asphalt Mixtures	FHWA-HIF-22-011
			Resource Responsible Use of Recycled Tire Rubber in Asphalt Pavements	FHWA-HIF-20-043

https://www.fhwa.dot.gov/pavement/recycling/

Cold & Hot In-place Recycling Methods

- Cold In-place Recycling
 - CIR
- Full Depth Reclamation
 - FDR
- Cold Central Plant Recycling
 - CCPR
- Hot In-Place Recycling
 - HIR

Images Source: Adam Hand

Objectives

- Learn details of positive State DOT practices.
- Collect and communicate experiences, lessons learned and performance information.
- Identify gaps for creation of research needs statements.

Image Source: University of Nevada Reno

U.S. Department of Transportation Federal Highway Administration

Participating Agencies

- 6 agencies
 - FLH
 - INDOT
 - NMDOT
 - NYSDOT
 - SCDOT
 - VDOT
- Virtual site visits and interviews

Federal Lands Highway Divisions

Scope

- CIR, CCPR, FDR & HIR
- Kick-off/planning meeting
- 2 or 3 day virtual visits
- Agency reports
- Summary report
- FHWA TechBrief
- Webinar

Agency Use of Technologies

U.S. Department of Transportation Federal Highway Administration

Recycling Technologies Used

ltem	FLH	INDOT	NMDOT	NYSDOT	SCDOT	VDOT
CIR	Yes	Yes	Yes	Yes	No	Yes
CCPR	Yes	Yes	Yes	V. Limited	No	Yes
FDR	Yes	Yes	Yes	No	Yes	Yes
HIR	No	No	Yes	Yes	No	No

Years of Experience

ltem	FLH	INDOT	NMDOT	NYSDOT	SCDOT	VDOT
CIR	50	5-10	3	20+	n/a	10+
CCPR	15	5-10	8	5+	n/a	10+
FDR	40	5-10	9	n/a	7	13+
HIR	50	n/a	20+	15+	n/a	n/a

12

Agency Use of Technologies

U.S. Department of Transportation Federal Highway Administration

Percentage of Recycling Program

ltem	FLH ¹	INDOT	NMDOT	NYSDOT	SCDOT	VDOT
CIR	6% (5%)	38%	10%	50 to 65%	0%	20%
CCPR	6% (5%)	12%	40%	<1%%	0%	18%
FDR	88% (80%)	50%	50%	0%	100%	62%
HIR	0%	0%	n/a	35 to 50%	0%	0%

 1 ≈10% of FLH Recycling in RAP Millings

Outline

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

2

U.S. Department of Transportation Federal Highway Administration

Data collection vehicle for roadway condition

Performance & Sustainability

- "A total of 40 agencies responded... Most cold recycling programs pave less than 50 lane-miles per year. Cold recycling is frequently used on roadways with annual average daily traffic (AADT) under 10,000, but more experienced agencies use cold recycling on roadways with AADTs between 10,000 and 25,000."
- "The reported service life of cold recycled pavements ranges from 20 to 34 years when the cold recycled mix is used in conjunction with an overlay. The service life is somewhat shorter and more variable when chip seals are used as the wearing surface. Poor drainage can reduce the service life by 30% or more."
- "Cold recycling with an overlay can reduce the cost of a project by 40% to 60% compared to a conventional mill and fill. Greenhouse gas emissions can be reduced by about 50% compared to a conventional mill and fill."

https://nap.nationalacademies.org/catalog/26319/practice-andperformance-of-cold-in-place-recycling-and-cold-central-plant-recycling

The use of a synthesis is not a Federal requirement.

Performance & Sustainability

Additional Resources:

- 2010 Robinette and Epps: LCCA & LCA Benefits (TRR 2179, 2010)
- 2015 FHWA: Towards Sustainable Pavement Systems https://www.fhwa.dot.gov/pavement/sustainability/ref_doc.cfm
- 2019 Gu et al: CIR & CCPR vs. New HMA, Energy consumption reduced 56-64% & GHG reduced 39-46%

Journal of Cleaner Production 208 (2019) 1513e1523

 2022 Amarh et.al: 10 VDOT rehabilitation projects including (CIR), CCPR, & FDR, HMA; pavement recycling projects used for interstate reconstruction and primary route restorative maintenance yielded lower global warming (GW) than non-recycling approaches.

Transportation Research Record 2022, Vol. 2676(6) 75–86

U.S. Department of Transportation Federal Highway Administration

Image Source: Transportation Research Record, 2022, Vol. 2676(6) 75–86

INDOT FDR Projects

- FDR vs. Conventional Rehabilitation Structural Performance
- 40-70% Cost Savings

Image Source: Indiana Department of Transportation

Performance – Washington Road Tahoe National Forest, CA

2009 – under construction

2019 – 10 years old

20

Performance – Ice House Road El Dorado National Forest, CA

U.S. Department of Transportation Federal Highway Administration

22 years old

31 years old

Performance – Rocky Mountain National Park, CO

U.S. Department of Transportation Federal Highway Administration

1982 CIR

After 26 years!

Outline

2

U.S. Department of Transportation Federal Highway Administration

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

Project/Recycling Technology Selection Criteria

- Some Examples:
 - FLH
 - <u>https://highways.dot.gov/federal-lands/specs</u>
 - INDOT
 - <u>https://www.in.gov/dot/div/contracts/design/Part%206/Chapter%2060</u>
 <u>2%20-%20Project%20Categories%20and%20Pavement%20Types.pdf</u>
 - NYSDOT
 - <u>https://www.in.gov/dot/div/contracts/design/Part%206/Chapter%2060</u>
 <u>2%20-%20Project%20Categories%20and%20Pavement%20Types.pdf</u>
 - FHWA Tech Brief: Overview of Project Selection Guidelines for Cold In-place and Cold Central Plant Pavement Recycling
 - <u>https://www.fhwa.dot.gov/pavement/asphalt/pubs/hif17042.pdf</u>

Project Selection: Possible Characteristics of a Good Candidate

U.S. Department of Ti

- End of service life.
- Minor patching.
- Fatigue cracking.
- 3-inch depth minimum.

Project Selection: Possible Characteristics of a Poor Candidate

- Road geometry: grade and curves.
- Less than 3 inches.
- Geotextile in milling depth.
- Need to tie into existing structures.

Project Selection: Field Investigation

3	FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON GEOTECHNICAL SECTION BORING LOG (English Units)		8 in H		
DEPTH (ft)	DESCRIPTION LATITUDE (DEGREES):48.67487800 LONGITUDE (DEGREES):-113.60747500	GRAPHIC LOG	SAMPLE #	SAMPLE	
0	Asphalt.			1	
2.0	Red to gray, silty fine to coarse SAND, some fine to coarse gravel, some clay, subangular to angular fragments, damp (SM) (BASE).			****	

Average Distance between Borings	2674 feet
Average Thickness of Pavement	4.2 inches
Controlling Thickness	3.6 inches

Boring No.	Station	Distance Between Borings (ft)	Pavement Depth (in)
SG03-45	2059+70	2640	3.8
SG03-46	2086+10	2700	4
SG03-47	2113+10	2640	3.6
SG03-48	2139+50	2680	4.2
SG03-49	2166+30	2676	5
SG03-50	2193+06	2680	3.6
SG03-51	2219+86	2654	4.5
SG03-52	2246+40	2760	4
SG03-53	2274+00		5

INDOT Pavement Treatment Selection

OVERLAY FULL-DEPTH Based on Project Conditions, Based on Project Conditions, Pavement Recycling Is Being Considered for Overlay Pavement Recycling is Being Considered for Full-Depth Distress Trigger: Bottom-Up Cracking and Distresses Requiring Full-Depth Patching are Observed Distress Trigger: Stripping, Top-Down Cracking, or Other Distresses that Would be Suitable for CIR are Observed Conventional Fix Trigger: Treatment ALTERNATIVES Is Set to be Reconstruction or Requires > 10% Full-Depth Patching Conventional Fix Trigger: Treatment |s Set to be a Cement FDR < 5 ln. Mill and Fill, Minor Structura (Include 50% Subgrade) Overlay, or PM Overlay Cement FDR No What Is the HMA (Include 50% Subgrade) Is the subgrade 5 in, to 10 in, thickness (In.)? CCPR Base Lift (If Suggested) CBR > 6? Multi-Lift HMA Overlay < 3 |n. Is the Proceed with Pre-Mil If answer to existing pavement > 10 |n, both is, No Yes Pre-MIII Depth? composite pavemen > 3 In. or the full depth Use CCPR on patching is Pre-Milled Portion < 10%? < 5 ln. Use CIR . If answer to one Emulsion FDR or both ls, Yes (Treatment Depth >= HMA Depth, , What Is the HM/ Can Include Aggregate Base 5 in. to 10 in. If Present, Avoid Reciaiming Subgrade) thickness (In.)? CCPR Base Lift (If Suggested) ALTERNATIVES < 3 In. Proceed with Pre-Mill Multi-Lift HMA Overlay > 10 |n, Pre-MIII Depth? MIII, Perform CCPR with HMA Overlay) > 3 in. Use CCPR on Are repairs to Yes Pre-Milled Portion the existing concrete avernet needed? Mill, Multi-Lift HMA Overlay PAVEMENT RECYCLING TREATMENT SELECTION CIR with HMA Overlay No Figure 602-1A Mill, Multi-Lift HMA Overlay

https://www.in.gov/dot/div/contracts/design/Part%206/Chapter%20602%20-%20Project%20Categories%20and%20Pavement%20Types.pdf

Source: Indiana DOT

U.S. Department of Transportation Federal Highway Administration

28

U.S. Department of Transportation Federal Highway Administration

Source: NYSDOT

Outline

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

 $\mathbf{\hat{\lambda}}$

Structural Pavement Design

- AASHTO 1993: FLH, NMDOT, SCDOT, VDOT (rehab)
- AASHTOWare Pavement[™] ME Design: INDOT, NYSDOT, VDOT (new)

2	
U.S. Department of Trai	nsportation
Federal Highway Adr	ninistration

ltem	FLH	INDOT	NMDOT	NYDOT	SCDOT	VDOT
CIR	0.28-0.30	75-100ksi	0.35	n/a¹	n/a	0.35
CCPR	0.25-0.30	75-100ksi	0.35	n/a	n/a	0.35 ²
FDR AC	0.20-0.25	75-100ksi	0.30	n/a	n/a	0.25
FDR PC	0.15-0.22	75-100ksi	n/a	n/a	0.26	0.25

¹NYSDOT typically very thick pavements, so no formal structural design is performed. ²VDOT used aggregate base thickness multiplied by 1.26 for CCPR in AASHTOWare Pavement[™] ME Design.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this material only because they are considered essential to the objective of the material. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

CIR Requires a Riding Surface

U.S. Department of Transportation Federal Highway Administration

Surface with:

- Asphalt pavement.
 - Use a tack coat.
- Double chip seal.

CIR Materials Selection – Binders & Active Fillers

U.S. Department of Transportation Federal Highway Administration

ltem	FLH	INDOT	NMDOT	NYSDOT	VDOT
Binders	Engineered Emulsion	Emulsion	Engineered Emulsion	Emulsion, PM Emulsion, PG64S-22 Foamed Asphalt	Emulsion or Foamed Asphalt
Active Filler	Portland Cement or Lime Slurry	Portland Cement Allowed	Portland Cement or Lime	1% Portland Cement	Portland Cement

Terminology...binder, stabilizing agent, active fillers

2

U.S. Department of Transportation Federal Highway Administration

CIR Mix Design

	FLH	INDOT	NMDOT	NYSDOT	VDOT
Compactor	Gyratory-35	Gyratory-30	Gyratory-30	Gyratory-30	Marshall-75
Emulsion	Indirect	Marshall	Indirect Tensile	Indirect Tensile	Marshall
	Tensile	Stability &	Strength & TSR	Strength & TSR	Stability &
	Strength &	Retained	Coating,	or Retained	Retained
	TSR	Stability,	Raveling	Marshall	Stability
		Raveling		Stability	
Foamed	n/a	n/a	n/a	Indirect Tensile	Indirect Tensile
				Strength & TSR	Strength & TSR,
				or Retained	Half-Life
				Marshall	
				Stability	

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this material only because they are considered essential to the objective of the material. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

34

Outline

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

Quality Control & Acceptance

Agency Acceptance Technician Qualification Lab Qualification Lab Qualification Lab Qualification Contractor Quality Control

6 Core Elements of a QA Program

Common Production QC Measurements

- Binder.
- Moisture.
- Gradation top size.
- Density.
- Thickness.
- Curing.

Curing & Opening to Traffic

ltem	FLH	INDOT ¹	NMDOT	NYSDOT	VDOT
Traffic	0 for 2	-	0 for 2 hours	-	0 for 2
	hours				hours
Moisture	≤ 2.5%	≤ 3.0%	≤ 3.0%	-	≤ 50% of
Content					optimum
					moisture
					content
Time	Cover	≥ 3 days	≥ 3 days	Emulsion ≥	-
	within 14	or		10 days;	
	days	10 days		Foamed	
		without		Asphalt ≥ 3	
		rainfall		days	

¹Greater than 3 days and less than 3.0% moisture or cured 10 days without rainfall.

NCHRP Research Projects

NCHRP 09-62, Report 960 at: https://nap.nationalacademies.org/download/25971

NCHRP 09-62 [Completed]

Rapid Tests and Specifications for Construction of Asphalt-Treated Cold Recycled Pavements

Project Data	
Funds:	\$999,737
Research Agency:	Virginia Transportation Research Council
Principal Investigator:	Brian Diefenderfer
Effective Date:	6/1/2017
Completion Date:	8/31/2022
Comments:	Publication pending

 Objective: The objectives of this research are to develop (1) time-critical tests for asphalttreated CIR, FDR, and CCPR materials and (2) a guide specification using these tests for process control and product acceptance that provides the agency with a basis for determining when the pavement can be opened to traffic and surfaced.

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4190

The use of an NCHRP Report is not a Federal requirement.

NCHRP Project 09-62 Phase III – Field Trials MnROAD

U.S. Department of Transportation Federal Highway Administration

Images Source: Adam Hand

45

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4190

46

NCHRP Research Projects

NCHRP 14-43, Web-only Document 363 at: <u>https://www.trb.org/Publications/Blurbs/182965.aspx</u>

NCHRP 14-43 [Final]

Construction Guide Specifications for Cold Central Plant Recycling and Cold In-Place Recycling

Project Data	
Funds:	\$250,000
Research Agency:	National Center for Asphalt Technology
Principal Investigator:	Benjamin Bowers
Effective Date:	5/26/2020
Completion Date:	8/31/2022
Comments:	Report Published as NCHRP Web-Only-Document 363

 Objective: to produce proposed AASHTO Construction Guide Specifications for the application of CCPR and CIR in the standard five-part AASHTO format with supporting commentary. The specifications shall include plans for quality assurance and agree with current provisional material specifications and mix design practices for these treatments. The specifications shall enable specifying agencies to tailor their own specifications to the local conditions and environments.

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4755

The use of an NCHRP Report is not a Federal requirement.

Outline

Introduction and Background

Performance, Sustainability, Cost

Project Selection

Pavement and Mix Designs

Production

Summary

Suggested Practices from Participating Agencies

- Pre-Construction
 - Detailed treatment selection guide
 - Regularly updated specifications
 - Adequate site investigation
 - Representative samples
 - Pre-construction meetings (all SH 4-8 hours)
- Mix Design
 - Accredited labs
 - Leveraging engineered emulsions

- Production & Acceptance
 - Requiring QC Plans
 - Control or test strips for density
 - Proof rolling requirement
 - On-site technical representative
 - Monitor yield daily
 - Maintenance/traffic control while curing
 - Pay for binder as separate item
- Programmatic
 - Post-project/season stakeholder meetings
 - Collecting performance data

Lessons Learned from Participating Agencies

- Use large enough minimum project sizes
- Without detailed site investigation variability can create issues
- Adequate drainage is essential
- Don't overlook geometric constraints (underpasses, drainage inlets, guardrail height, etc.)
- If significant changes in cross section (subgrade, mc, thickness), may require more than one mix design

- U.S. Department of Transportation Federal Highway Administration
- If correcting geometry (grades/cross slopes) be sure adequate recycled layer thickness
- Leave adequate pavement structure in-place
 - Do not include aggregate base in CIR
- Require mix designs and QCPs 30 days prior to production
- Recognize recycled layer "fluffs"
- In high moisture, portland cement helps with strength

Lessons Learned from Participating Agencies

- Night work, early season, cool temps, CIR emulsion breaking
- Change milling speed, moisture & temperature affect gradation & density
- Calibrate equipment
- Keep rollers back from paver on CIR, not like HMA

- Contractor and inspector experience with new technologies important
- HMA tech ≠ CIR tech
- Tack coats are helpful
- Post-project/season stakeholder meetings

References

National Cooperative Highway Research Program

Practice and Performance of Cold In-Place Recycling and Cold Central Plant Recycling

The National Academics of SCIENCES • ENGINEERING • MEDICINE (XCIENEE) BANGRORMON RESEARCE BOARD

U.S. Department of Transportation Federal Highway Administration

TechBrief

The Asphale Pavement Technology Program is an integrated, national effort to improve the long-term performance and cost effectiveness of asphalt pavements. Managed by the Federal Highway Administration through partnerships with State highway agencies, industry, and academis, the program's primary goals are to reduce congestion, improve safety, and foster technology innovation. The program was established to develop and implement guidelines, methods, procedures, and other tools for use in asphalt pavement materials selection, mature design, testing, construction, and quality control.

US Department of Transportation Federal Highway Administration Office of Asset Management, Pavements, and Construction FHWA-HIF-17-042

February 2018

Overview of Project Selection Guidelines for Cold In-place and Cold Central Plant Pavement Recycling

This Technical Brief provides project selection guidelines for the cold recycling techniques of cold in-place and cold central plant recycling. The Tech Brief Intends to aid the user in properly selecting candidate projects for using cold powement recycling. Significant improvements in cold recycling technologies have been made since the 2000s, including improvements in engineering, construction equipment, and test methods, together with improved mix designs, resulting in improved reliability of performance of the final product.

Introduction

Various in-place recycling techniques have been used to rehabilitate and maintain pavements in the United States since the 1930s. Two events of the 1970s rekindled interest in asphalt recycling: the petroleum crisis and the development of large-scale cold planing equipment with easily adjustable milling teeth.

In recent years, the economics and supply of petroleum and high quality natural aggregates have increased the needs for costeffective alternatives include cold in place recycling (CBR) and cold central plant receipting (CDR). These methods provide owner agencies with cost effective and sustainable methods to repair their aggregates and the application of the second designed, specified and constructed, these methods correpair treatment to the right read at the right time, and when properly designed, specified and constructed, these methods can result in cost savings of 30 to 50 percent compared to conventional apphal operations, thus allowing for more miles of improved readways from the associated cost savings. In addition, CIR and CCPK have been shown to accelerate project delivery and mitigate construction traffic congestion while including improvements in the overall sustainability of operations.

In spite of economically and environmentally effective technologies being available for decades, many owner agencies

52

References

FHWA website at: https://www.fhwa.dot.gov/pavement/recycling/apiprt.cfm

2

U.S. Department of Transportation Federal Highway Administration

Tech Brief. NHI 2-day training. Just in time videos. Checklist series.

Thank You

Q & A

Tim Aschenbrener Federal Highway Administration

Timothy.aschenbrener@dot.gov

54